### ATSC & ISDB-T TRANSMISSION SYSTEMS

#### GUY BOUCHARD, CBC / Radio-Canada New Broadcast Technologies





Dec 3td 2013



# OUTLINE

- Emission Mask Measurment
- Digital Transmission Fundamental
- Transport stream management
- Mobile television
- Video Compression



 $\sim$ 



# **STANDARDS COMPARISON**

| Key factor comparison |           |              |              |                       |      |
|-----------------------|-----------|--------------|--------------|-----------------------|------|
| Parameter             | ATSC      | DVB-T        | DVB-T2       | ISBD-T                |      |
| Occupied              | 6         | 6,7,8        | 1,7 to 10    | 6, 7                  | MHz  |
| Bandwidth             |           |              |              |                       |      |
| Number of carriers    | 1         | 1705 or 6817 | 1k to 32k    | 1405, 2809<br>or 5617 |      |
| Guard Interval        |           | 1/32 to 1/4  | 1/4 to 1/128 | 1/32 to 1⁄4           |      |
| Equalizer window      | Resource  |              |              |                       |      |
|                       | dependant |              |              |                       |      |
| Max Data range        | 19.38     | 31.7         | 40           | 23                    | Mb/s |
| C/ N threshold for    |           | 16.7         | 10.8         | 17                    |      |
| 24 Mb/s               |           |              |              |                       |      |
| Mobility              | Clumsy    | Good         | Excellent    | Excellent             |      |



 $\mathbf{m}$ 



### **EMISSION MASK MEASUREMENTS**



4



# INTRODUCTION

>The measurement of the emission mask of any systems with intrinsic energy dispersal is challenging because of:

- The difficulty of establishing a reference
- The test equipment can't provide you with a plug and play answer
- The dynamic range required far exceed the spec of all spectrum analyzer on the market
- The tests cannot be taken at any level





# SCOPE

### >Background:

- The ubiquitous spectrum analyzer
- Energy dispersal issues
- Dynamic Range issues

### The emission mask

- In-Channel measurement
- Adjacent channel measurements

### >The measurements

- Establishing a Reference
- Shoulder measurements
- Distant measurements
  - Band stop method
  - Emission mask filter method



5



### SPECTRUM ANALYZER ARCHITECTURE





 $\sim$ 



# **ENERGY DISPERSAL ISSUE**

- >The SA sees only one resolution at the time
- >Look at the pilot to signal ratio
- Double the resolution
- >Look at it again, it is 3 dB lower, why?

Correct Channel Power

- ≻The real channel power has to be corected by a factor of 10 log (edbw) 10 log(rbw)
- \* Normally a EDBW/RBW ratio of at least 20 is required to ensure a usable spectrum display, 50 is ideal



 $\infty$ 



### THE DYNAMIC RANGE ISSUE

>The required dynamic range required is in excess of 120 dB

#### ➤This creates 2 issues:

- The input level must be optimized to gte the most dynamic range of the SA
- The in-channels can be taken, however the adjacent channels are meaningless





5



# **DYNAMIC RANGE**





10



# THE NET RESULT







### TYPICAL SPECTRUM DYNAMIC RANGE

| Input related spurious<br>R&S FSH3 / FSH6            | mixer level ≤-40 dBm<br>carrier offset >1 MHz |                   |  |
|------------------------------------------------------|-----------------------------------------------|-------------------|--|
| Receive frequency<br>Up to 3 GHz<br>3 GHz to 6 GHz   |                                               | -70 dBc (nominal) |  |
| Receive frequency =<br>signal frequency – 2.0156 GHz | signal frequency<br>2 GHz to 3.2 GHz          | 55 dBc (nominal)  |  |
|                                                      |                                               |                   |  |

#### (4) Dynamic Range

| Characteristics                                      | Description                                                                                           |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Average noise level                                  | -113dBm + 2 f (GHz)dB (RBW 1kHz, VBW 10Hz, ATT 0dB, f $\geq$ 1MHz)                                    |  |  |
| 1dB gain compression                                 | $>$ -5dBm (Mixer input level, f $\ge$ 20MHz)                                                          |  |  |
| Secondary harmonic distortion                        | $\leq$ -70dB<br>(f $\geq$ 10MHz, Mixer input level -30dBm)                                            |  |  |
| Two-signal third order<br>intermodulation distortion | $\leq$ -70dB<br>(f $\geq$ 10MHz, Mixer input level -30dBm,<br>Frequency difference between 2 signals) |  |  |
| Other spurious factors related to the input          | $\leq$ -60dB<br>(Offset $\geq$ 20kHz, Mixer input level -30 dBm)                                      |  |  |
| Residual responses                                   | $\leq$ -100dB (f $\geq$ 10MHz, ATT -0dBm, Input termination with 50\Omega)                            |  |  |



 $\mathbf{C}$ 



### DYNAMIC RANGE VARIES WITH LEVEL

How can you know we are attacking the Spectrum analyzer at the correct level:

- If it is driven to hight the intermod your are trying to measure will be originated by the front end of the SA
- If it is driven to low the intrinsic noise of the unit will mask most of what you are trying to measure

**Procedure to find the optimum level:** 





# **OPTIMAL DRIVE LEVEL**

- You can use your ISDB-T signal to asses intermods
  - Measure the level of intermod produced by your TX
  - Try to attack the spectrum nanlyzer at a low level (-30 to -40 dBm)
  - Raise level until the intermod has raise by about 5 dB
  - Back off 6 dB, you should be close the the optimum
- Can the sniffer you need to use deliver the optimum level ?





### **THE ATSC EMISSION MASK**



Guy Bouchard, CBC

(Based on a 500 kHz RBW)

15

**Broadcast Technology Society** 







### **BRAZILIAN EMISSION MASK**

| Difference from<br>carrier frequency | Minimum attenuation in relation to average power<br>measured at carrier central frequency |                      |               |  |
|--------------------------------------|-------------------------------------------------------------------------------------------|----------------------|---------------|--|
|                                      | Non-critical<br>mask                                                                      | Sub-critical<br>mask | Critical mask |  |
| ±2.86 MHz                            | 20.0 dB/10kHz                                                                             | 20.0 dB/10kHz        | 20.0 dB/10kHz |  |
| ±3.00 MHz                            | 27.0 dB/10kHz                                                                             | 34.0 dB/10kHz        | 34.0 dB/10kHz |  |
| ±3.15 MHz                            | 36.0 dB/10kHz                                                                             | 43.0 dB/10kHz        | 50.0 dB/10kHz |  |
| ±4.5 MHz                             | 53.0 dB/10kHz                                                                             | 60.0 dB/10kHz        | 67.0 dB/10kHz |  |
| ±9.0 MHz                             | 83.0 dB/10kHz                                                                             | 90.0 dB/10kHz        | 97.0 dB/10kHz |  |
| ±15.0 MHz                            | 83.0 dB/10kHz                                                                             | 90.0 dB/10kHz        | 97.0 dB/10kHz |  |





# **ISDB-T EMISSION MASK**



Fig. 4-1 Transmission-spectrum limit mask for digital terrestrial television broadcasting

| Difference from the center frequency<br>(MHz) | Attenuation relative to<br>average power P<br>(dB/10 kHz) | Type of stipulation |
|-----------------------------------------------|-----------------------------------------------------------|---------------------|
| ±2.79                                         | -27.4                                                     | Upper limit         |
| ±2.86                                         | -47.4                                                     | Upper limit         |
| ±3.00                                         | -54.4                                                     | Upper limit         |
| ±4.36                                         | -77.4*                                                    | Upper limit         |



18

28/12/2013

Guy Bouchard, CBC



# **HIGHLIGHTS:**

Rather high noise floor -77 dB DTV

Shoulder at -30 dB DTV (similar to ATSC)

Reference point -27 dB down

Normalized bandwidth at 10 kHz (a practical value)





# **MEASUREMENTS**

#### >In-Channel measurement

### ➢Optimize input level

- Start at –20 dBm raise R level until intermod level diminished more than the attenuation provided
- Establish 0 dB DTV reference (Bar level + 10 log(edbw/rbw)

#### Verify the shoulder level

Good reference point



### CBC Radio-Canada ADJACENT CHANNEL MEASUREMENTS

There is an issue with the dynamic range of the spectrum analyzer, the best spectrum analyzer on the market have about 70 to 80 dB of usable dynamic range. The adjacent channel measurements requires about 100 to 120dB of dynamic range

Mitigation technique have to be used





### **OPTION A – USE A BAND-STOP FILTER**

#### >A single piece of test Equipment is required SA

- The filter cannot be used 500 kHz from the channel edge
- Requires Judgment and expertise
- Preclude the measurement of the harmonic response



### **OPTION A – USING A STOP BAND FILTER (WIDE NOTCH)**





### **AMPLITUDE RESPONSE REQUIRED**



Note: The Attenuation at the edge of the pass band can be any value, A dB up to 3dB at Fo  $\pm 9$  MHz. However, the required stop-band attenuation is increased by A dB to compensate for the required signal power increase caused by the filter's loss.

24



### **TYPICAL RESPONSE**



25



### MEASUREMENT FILTER =/- 1 K



Microwave Filter Company, Inc.

#### NEW PRODUCT RELEASE DTV Mask Emission Test (Bandstop) Filters

Choose from one of two new model filters offered by MFC - specifically designed for use as the bandstop test filter described in the IEEE Broadcast Technology Society's preferred test method (#2) from their document <u>"Practice for</u> Measurement of 8-VSB Digital (US) Television Mask Compliance".



The information pertaining to these bandstop test filters is as follows :

| Model      | Test Channel (Fc)<br>Center Frequency Option | <br>Stopband                 | ance<br>Passband       | DTV Mask<br>Classification |
|------------|----------------------------------------------|------------------------------|------------------------|----------------------------|
| 16150-(ch) | (54-806) MHz                                 |                              | Fc±5MHz<br>3 dB [Max.] | Full Service               |
| 16560-(ch) | (54-806) MHz                                 | <br>Fc±3 MHz<br>20 dB [Min.] | Fc±5MHz<br>3 dB [Max.] | LPTV/Translator            |

### CBC Radio-Canada OPTION B- TAKE PRE EMISSION MASK FILTER MEASUREMENTS AND CORRECT FOR IT -



Guy Bouchard, CBC

28/12/2013

### CBC Radio-Canada OPTION B - TAKE PRE EMISSION MASK FILTER MEASUREMENTS AND CORRECT FOR IT

2 Instruments are required a network analyzer and a Spectrum Analyzer

- The measurement has to be taken on a hot filter to preclude drift error
- Requires Judgment and expertise
- Preclude the measurement of the harmonic response , beware of overmoded coupler



### **IN PRACTICE**



29



### **MATHEMATICAL PROCESSING**





30

### CBC (B) Radio-Canada 2<sup>ND</sup> HARMONIC MEASUREMENTS

Coupler are a wavelength sensitive device

>At the second harmonic all classic sniffers will be overmoded and will no longer offer a reliable coupling ratio.





# CONCLUSION

Emission mask measurements are tricky

Test equipment dynamic range is quite an issue

Results cannot be taken directly from spectrum analyzer

>0 DB DTV reference has to be established first

≻Use filter wisely

2<sup>nd</sup> harmonic measurements cannot be taken from a sniffer





# **DIGITAL TRANSMISSION**

333



Satellite 101

### Why convert in digital?

### Better

- Qualité
- □ Spectral efficiency
- More rugged covreage
- □ System integration







### **Typical Digital Transmission System**







### To be successfull in digital transmission you have to be smarter than the avreage bear







## Coding

#### > Whats coding:

Using a code to transfer a message

#### > Exemple:

The catcher and Pitcher are exanging

- Coded messages so the catcher knows
- what type of Ball to expect







## Why Coding?

- Lower the binary rate
- Avoid conflicts
- Alleviate the weight of errors
- Ensure message privacy







## **Coding Binaire**

Ex: gray Code

- Characteristics :
  - All adjacent symbols vary from Only one bits
- Advantages:
  - Alleviate the impact of errors
  - □ Ex:
    - Binary 7 is (0111) and 8 is (1000) [4 bits changed]
    - Gray 7 is (0100) and 8 is (1100) [1 bit changed]





### Interleaving

Imagine that your employer pay system has underwent a burst of error that suddenly changed your paycheck from XXXX \$ a 9999\$



Sadly a temporal mixing technique called interleaving will distribute the errors on time, so four happy employee will have one of the digit of their paycheck canged to 9





### **Burst of errors**







### Interleaving

#### The cards are distributed in orderly stacks: 1,2,3,4,5



#### 2,000,000 cards

| PRBS | The stacks are  |
|------|-----------------|
|      | then serialized |
| 999  | by been picked- |
| 3    | up using a      |
|      | pseudo-randon   |
| 445  | sequence        |
| 227  |                 |

784







### Inter-décalage

The cards wer distributed in orderly stacks: 1,2,3,4,5



2000 stacks of 1000 cards





#### Inter-décalage



- The burst of error is then spread on the lenght of the interleaver
- So 4 employees will have one of the digit of their paycheck changed to 9
- Another technique called FEC will finalize the process and elkeminate the errors caused by the burst of errors





### Interleaving

#### Write in Rows

#### **Reads in rows**











**Satellite Receiver** 





## **Forward Error Correction**

- But: Transmitt startegic codes aimed to reconstruct the signal at the other end
- > Types :
  - Viterbi
  - Reed Solomon



- Best results tends to be
- acheived with 2 concateneted layers of coding





#### **Convolutional Interleaving**



M=4, B=52, N=208, R-S Block =207, BXM=N





#### **Error corrector**











### **Typical performance of FEC**





### How does FEC gets inserted?



- By adding the overhead bistream before the interleaver.
- The FEC ratio actually represent the share of the payload in an FEC augmented bitstream
  - □ 1/2 50% means that 50% of the data is payload 50% F
  - □ 3/4 75% of the data is payload 25% is FEC
  - □ 7/8 87.5% of the stream is data 12.5% FEC
  - If the stream is payload and 75% FEC FEC





### How the Error correction mechanism works



- A maximum likelyhood decoder, applies a mathematical process that permits to detect and correct errors at the bit level, based on the highest probablility of error
- For tutorial purposes we will explore a simple but effective FEC scheme, obviously todays FEC schemes are much more efficient.





#### Imagine a bit block of 64 bits, augmented by the sum of each rows and colums( 64 + 2 X (3X8) = 112 Bits

|   | Data | 3 |   |   |   |   |   |   | Su | m |   |
|---|------|---|---|---|---|---|---|---|----|---|---|
|   |      |   |   |   |   |   |   |   |    |   |   |
|   | 1    | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1  | 1 | 0 |
|   | 1    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1 | 0 |
|   | 1    | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1  | 0 | 0 |
|   | 1    | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1  | 0 | 0 |
|   | 0    | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 0 | 1 |
|   | 0    | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1  | 0 | 0 |
|   | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 1 |
|   | 1    | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 1 | 1 |
|   |      |   |   |   |   |   |   |   |    |   |   |
| S | 1    | 1 | 1 | 0 | 1 | 1 | 1 | 1 |    |   |   |
| u | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |    |   |   |
| m | 1    | 0 | 1 | 1 | 0 | 0 | 1 | 1 |    |   |   |





#### Oops an error took place in the payload section

|   | Data |   | Data |   | Data |   |   |   |   |   |   |  | Su | m |  |
|---|------|---|------|---|------|---|---|---|---|---|---|--|----|---|--|
|   |      |   |      |   |      |   |   |   |   |   |   |  |    |   |  |
|   | 1    | 1 | 0    | 0 | 1    | 1 | 1 | 1 | 1 | 1 | 0 |  |    |   |  |
|   | 1    | 0 | 0    | 0 | 0    | 0 | 0 | 1 | 0 | 1 | 0 |  |    |   |  |
|   | 1    | 0 | 1    | 0 | 1    | 1 | 0 | 0 | 1 | 0 | 0 |  |    |   |  |
|   | 1    | 1 | 1    | 0 | 0    | 0 | 1 | 0 | 1 | 0 | 0 |  |    |   |  |
|   | 0    | 0 | 1    | 0 | 1    | 1 | 1 | 1 | 1 | 0 | 1 |  |    |   |  |
|   | 0    | 1 | 1    | 0 | 0    | 0 | 1 | 0 | 1 | 0 | 0 |  |    |   |  |
|   | 0    | 0 | 0    | 0 | 0    | 0 | 0 | 1 | 0 | 0 | 1 |  |    |   |  |
|   | 1    | 1 | 1    | 0 | 1    | 1 | 1 | 1 | 1 | 1 | 1 |  |    |   |  |
|   |      |   |      |   |      |   |   |   |   |   |   |  |    |   |  |
| S | 1    | 1 | 1    | 0 | 1    | 1 | 1 | 1 |   |   |   |  |    |   |  |
| u | 0    | 0 | 0    | 0 | 0    | 0 | 0 | 0 |   |   |   |  |    |   |  |
| m | 1    | 0 | 1    | 1 | 0    | 0 | 1 | 1 |   |   |   |  |    |   |  |

Toujours septique, essayons insérer l'erreur sur l'une des sommes



### In the Sum section...

|   | Data | a |   |   |   |   |   |   | Su | m |   |   |
|---|------|---|---|---|---|---|---|---|----|---|---|---|
|   |      |   |   |   |   |   |   |   |    |   |   |   |
|   | 1    | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1  | 1 | 0 |   |
|   | 1    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1 | 0 |   |
|   | 1    | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1  | 0 | 0 |   |
|   | 1    | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1  | 0 | 0 |   |
|   | 0    | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 0 | 1 |   |
|   | 0    | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1  | 0 | 0 |   |
|   | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 1 |   |
|   | 1    | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 0 | 1 | ← |
|   |      |   |   |   |   |   |   |   |    |   |   |   |
| S | 1    | 1 | 1 | 0 | 1 | 1 | 1 | 1 |    |   |   |   |
| u | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |    |   |   |   |
| m | 1    | 0 | 1 | 1 | 0 | 0 | 1 | 1 |    |   |   |   |







#### The case of 2 errors







#### 2 errors of the worst kind



%?\*.....





FEC



In this case we can affirm that our FEC scheme will correct all errors in the block provided they dont exceed one error per block : 1/112 soit un TE de 8 E –3 knowing this we better use an interleaver that is at least 112bits long





### **Families of Modulations**



DSB Double Sideband

DSB Double Sideband With supressed Carrier

SSB-SC ingle Sideband With Supressed carrier

SSB-SC Single Sideband With Partially Supressed carrier



For DVB modulations, the bandwidth to transmit one symbol is 1 Hz, in the case of SSB, the required bandwidth falls to ½ Hz



### **Phase Modulation (QPSK)**







#### **Phase Modulation (8PSK)**







# **AMPLITUDE MODULATION**









=

### Linearization







Signal d'entrée





+





Résultat BTS

Signal d'entrée prédistorsioné

Réponse du PA



#### Intermods







#### Amplifier









Mer> 28 dB avec pre-cor



Signal d'entrée



#### Linearization



Parfaite

Compression

Sur-corigée





# **POWER MEASURMENTS**





28/12/2013 Guy Bouchard, CBC



67



## **ATSC POWER MEASURMENT**

We can read the power of an energy dispersed carrier by adding the following correction factor

- 10 Log (EDBw) 10 Log(res bw)
- 10 Log (5.38e6) 10 log(res bw)
- An aplidude marker on top of the waveform shows -20 dBm, the analyzer is running at a resolution bandwidth of 30 kHz
- Puiss: 20 + 10 log (5.38e6) 10 log(3e4)= 2.53 dbm
- On peut aussi utiliser la fonction power Window de l'analyseur





# **ATSC STANDARD**

| Parameter                 | Terrestrial mode                  | High data rate mode   |
|---------------------------|-----------------------------------|-----------------------|
| Channel bandwidth         | 6 MHz                             | 6 MHz                 |
| Excess bandwidth          | 11.5%                             | 11.5%                 |
| Symbol rate               | 10.76 Msymbols/s                  | 10.76 Msymbols/s      |
| Bits per symbol           | 3                                 | 4                     |
| Trellis FEC               | 2/3 rate                          | None                  |
| Reed-Solomon FEC          | T=10 (207,187)                    | T=10 (207,187)        |
| Segment length            | 832 symbols                       | 832 symbols           |
| Segment sync              | 4 symbols per segment             | 4 symbols per segment |
| Frame sync                | 1 per 313 segments                | 1 per 313 segments    |
| Payload data rate         | 19.28 Mbps                        | 38.57 Mbps            |
| NTSC co-channel rejection | NTSC rejection filter in receiver | N/A                   |
| Pilot power contribution  | 0.3 dB                            | 0.3 dB                |
| C/N threshold             | 14.9 dB                           | 28.3 dB               |

#### **Parameters for VSB Transmission Modes**



## CBC Radio-Canada ATSC FRAME STRUCTURE





## **ATSC SEGMENT**





# **DATA SEGMENT**



FIGURE 3: ATSC BASEBAND DATA FIELD

28/12/2013 Guy Bouchard, CBC

### CBC Radio-Canada PEAK TO AVREAGE RATIO



 $\mathbf{m}$ 

28/12/2013 Guy Bouchard, CBC

# ADAPTIVE TAP EQUALIZER

Aimed at removing unwanted Multipath components

Based on the impulse response of known part of the signal

Synthetize and cancel known undesired multipath components

The length of the equalizer is resources dependent and vary fro -20 uS to 120 us

Beware that the speed of light is 3.16 us per km





# **INTERFERENCE ISSUES**

- Static multipath is no longueur an issue for ATSC receivers neither should it be for ISDB-T
- Overload is often the issue, beware the overload may be out of band
  - Active antennas may be saturating as their input circuit is fairly wideband
  - Digital demods are sensitive to:
    - Image frequency
    - Microphonics
  - Multiple Receive antennas are an efficient work-around as the receiver may not see part of the signal due to multipath, Giving the equalizer more meat to deal with is often a good measure.





# **ADAPTIVE EQUALIZER**





#### TRANSPORT STREAM MANAGEMENT

28/12/2013 Guy Bouchard, CBC





I ranspo MPEG rt layer RF

layer



### WHAT IS A TRANSPORT STREAM?

A transport stream is a formatted data stream aimed at carrying compressed broadcast signals in a a fully addressable format.

A Transport Stream is la logical entity carried on a Physical layer





# **TRANSPORT STREAMS**

Transport streams are the vehicle over witch the necessary information is multiplexed to allow a receiving devices (ex: an ATSC receiver) to fully decode a compressed service including:

- Video
- Audio
- Caption
- Navigational Information (ex: program guide)





### **T.S.**

#### **Transport streams are mostly carried on the following Physical layer:**

#### oSMPTE-310

 relies on a coax transmission system based on a synchronous feed @ 19.39 Mb/s

#### **DVB-ASI**

• DVB-ASI relies on a coax transmission based on a subset of the SDI specification. The signal is always transmitted @ 270 Mb/s. However a clever stuffing protocol permits transmission from 1 to 214 Mb/s.

#### Ethernet

• The Ethernet physical layer can be used to carry encapsulated MPEG transport stream





### **SMPTE-310**

**Coax interface** 

SDI like signal (800 mV p-p)

**Polarity sensitive** 

Synchronous @ 19.392658 Mb/s









**Coax interface** 

SDI like signal (800 mV p-p)

**Polarity sensitive** 

Synchronous @ 270 Mb/s

Stuffed for the difference between the payload (1 to 218 mb/s and 270 mb/s)







### **ETHERNET**

#### Ethernet

• IP mostly relies on Unshielded Twisted Pair (UTP, or cat-5) cable, Transport streams are encapsulated in 1388 bytes packets, carried mostly as UDP traffic.



| OSI Model       |                 |                 |                                                                                                               |  |  |
|-----------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------|--|--|
|                 | Data unit       | Layer           | Function                                                                                                      |  |  |
| Host<br>layers  | Data            | 7. Application  | Network process to application                                                                                |  |  |
|                 |                 | 6. Presentation | Data representation, encryption and decryption, convert machine dependent<br>data to machine independent data |  |  |
|                 |                 | 5. Session      | Interhost communication, managing sessions between applications                                               |  |  |
|                 | Segments        | 4. Transport    | Reliable delivery of packets between points on a network.                                                     |  |  |
| Media<br>layers | Packet/Datagram | 3. Network      | Addressing, routing and (not necessarily reliable) delivery of datagrams<br>between points on a network.      |  |  |
|                 | Bit/Frame       | 2. Data link    | A reliable direct point-to-point data connection.                                                             |  |  |
|                 | Bit             | 1. Physical     | A (not necessarily reliable) direct point-to-point data connection.                                           |  |  |





### **BASIC ENCODING TECHNIQUES**

Non Return Zero – NRZ – low voltage=0, high voltage=1 Good for slow speed data links, Very susceptible to interference

Manchester encoding – voltage transitions (low > high=1, high<low=0) - Good for 10BaseT Ethernet



Ways to Represent a Signal on the Medium

Broadcast Technology Society



#### MONITORING THE ENTIRE NETWORK



Management Console





### **TS ON IP**

# Typical TS over IP implementation, we encapsulate 5 or 7 MPEG packets per IP packets







## **UTP CABLE**

#### Cable 10BASE-T/ 100BASE-TX Straight-Through





| Pin Labe | ł  | Pin Label |
|----------|----|-----------|
| 1 TX+    | ➡1 | TX+       |
| 2 TX-    | ➡2 | TX-       |
| 3 RX+4   | ➡3 | RX+       |
| 4 NC     | 4  | NC        |
| 5 NC     | 5  | NC        |
| 6 RX- <  | ➡6 | RX-       |
| 7 NC     | 7  | NC        |
| 8 NC     | 8  | NC        |

Straight-Through Cable



Wires on cable ends are in same order.



# **UNICAST OR MULTICAST**

Unicast represent a private conversation, it implies a one for one relationship.







### **MULTICAST**

Presume a non private relationship between one stream and multiple clients.







# **SERIAL FORMAT**

The MPEG data has to be serialized in order to be transmissible over cable or RF. The serialization process is made according to a strict protocol based on Packet based multiplexing.

The encoder has to fit all program elements in the transport stream:

- Audio
- Video
- Data





# **MPEG PACKETS**

The MPEG transport stream relies, unlike IP, on fixed length packets. The length of a standard MPEG packet is 188 bytes

The best human scale model for a data packet is a train wagon. The wagon carries a certain payload. In data terms it can be expressed in the number of bytes it carries. In the specific case of MPEG it is 188 Bytes. Bytes look all the same so a header has to be added to the packet so the de-multiplexer can know what is the content or the destination of the data packet.





# **MPEG PACKETS TRANSPORT**





# **MULTIPLEXING**







# **MULTIPLEXING**



Audio



# **MPEG SIGNAL TRANSPORT**

The MPEG compression take place

Mpeg encapsulate video in a compressed transport stream that is segmented in packets, each packets may be compared to a train wagon







# **NETWORKING**

You may decide to decode the MPEG signal at any time and get the video and audio back:



CC1 CC2 CC3 CC4 CC5





# **MPEG MULTIPLEXER**

#### An Mpeg Multiplexer Can:

- Select Packets
- Rename packets
- Filter unwanted PID's
- Carrousel Table information





#### PID

The PID or Program Identifier is a number (13 bit integer) located in the transport packet header. The latter is used to index MPEG packets. Just like IP routers, the MPEG TS handling equipment doesn't have to read all the 188 bytes packets it relies solely on the PID number to elect if the packet is required, and where it shall be routed to.





### **PID NUMBER**







# **MPEG TABLES**

#### PAT(Program Association Table): (pid 0)

- List the services in the TS
- Points to the PMT of Each PMT

#### PMT: (Program Map table)(Pid variable)

- One PMT per service
- Points to the location of each program elements
- Gives service info (Tittle, TSID etc)

# MGT (Master Guide Table) or Si (service information table)

- fixed PID Location (1FFB or 16)
- Points to program guide information







MPEG Structure











# **MPEG FILTERING**







# **MPEG MULTIPLEXING**











#### Service descriptor:

Now that the audio decoder has the audio packets and the video decoder has the video packets, does the decoder have sufficient information to decode the stream?

Not quite, the decoders needs to know a little more about the signals like (the standard the packets were coded), the language, etc :

•Coding standards:

```
Audio (MPEG layer 1, Dolby AC-3, etc)Video:(MPEG-1, MPEG-2, AVC, etc)
```

This information is carried on a 8 bit number called a service

| descriptor<br>Service | Descriptor |
|-----------------------|------------|
| Mpeg-2 video          | 01h        |
| Mpeg layer 2 audio    | 03h        |
| Dolby AC-3            | 81h        |

Figure 7 MPEG service descriptors



#### Language Descriptor

The language selection is made using a worldwide standard that defines languages called ISO-639, the latter defines a 2 letter codes for most known languages, The so called "Language Descriptor" permits to encode audio in several languages for the user selection. On most ATSC receivers the MTS key permits to toggle between languages.

#### Language ISO 639 Descriptor

| English    | en |
|------------|----|
| French     | Fr |
| German     | de |
| Finnish    | fi |
| Polish     | Pl |
| Portuguese | Pt |
| Russian    | ru |

### CBC 🏟 Radio-Canada







## CBC 🏟 Radio-Canada





## TRANSPORT STREAMS HAVE A LANGUAGE OF THEIR OWN

The receiving device expect to receive information in a known order, (just like a sentence where a subject, a verb and a complement are expected in order).

The language or Syntax required varies with the application:

- 2 MPEG devices in a lab environment don't need much of Shakespeare language, in fact a few commands are sufficient.
- The basic MPEG syntax is used





## **SYNTAXES**

# A satellite receiver needs a little more information (carrier freq, FEC, number of services etc)

 The DVB syntax is used in this case, please note that all the elements of the basic MPEG syntax are also included in the DVB syntax.

# An ATSC receiver also requires more information (program title, program Info, Vchip, caption)

 The ATSC syntax is used in this case, note that all the elements of the basic MPEG syntax are also included in the ATSC syntax.





## **PHYSICAL LAYER AND SYNTAX**

Physical Layer and syntax are independent variables: so you can end up with:

| Physical layer | Syntax |
|----------------|--------|
| SMPTE-310>     | ATSC   |
| DVB-ASI        | DVB    |
| Ethernet       | SCTE   |





## SYNTAXES DVB/ ATSC / SCTE

Digital Video Broadcasting (DVB) is a worldwide standard defining Digital Video transmission across various media's:

- Satellite DVB-s
- Cable DVB -C
- Terrestrial transmission DVB-T
- SCTE for North American Cable

## **»ATSC is terrestrial Only**





## **TABLES**

Each syntaxes defines a number of tables into which the information is stored in an orderly manner:

## **Ex: The MPEG syntax defines 2 types of tables:**

- Program Association Table (PAT) (always located at PID 0): defines how many services are multiplexed in the current stream, their name or ID and the location (in Pid no) of each services index table or PMT
- Program Map Table (PMT); defines the location of the video, audio and ancillary information for one service, it is located in a PID number defined in the PAT





#### **TABLES** Each syntax defines a variety of system tables as follows:









## **TS OVER IP**

Used as an ASI coax replacement

Not made to resist dropped or delayed packets

Prefers to be routed over simple routes with dum switches

Not the protocol we streamed content over the internet





# **NETWORK DIAGRAM**

#### **Every Television station shall have:**

- A Video functional
- And audio functional
- A TS functional
- A control functional
- Where is your network diagram?



28/12/2013 Guy Bouchard, CBC



## NOT ALL SWITCHES ARE CREATED EQUAL







121



## **TS ON IP**

# Typical TS over IP implementation, we encapsulate 5 or 7 MPEG packets per IP packets

 IP
 UDP
 RTP
 n \* 188 bytes

 20 bytes
 8 bytes
 12 bytes
 n \* 188 bytes

UDP header







# **MPEG TS PACKET HEADER**



**CC - Continuity Check Index** 



## **BROADCAST TRAFFIC ENEMY NO 1: JITTER**



# Jitter originates from a speed differential between parts of a serialized stream

- This train symbolizes a stream of IP packets, imagine for a minute that those wagons are tied together by steel joints with very little expansion contraction, all wagons will travel at precisely the same instantaneous speed
- Imagine now that the wagon are tied with bungee cords







# SOURCE OF IP JITTER

Each time the traffic is exposed to route switching

Each time a switch has to take a decision it take some time to do so, not exactly the same time at each occurence





# **DECISION TIME**





## RESULTS









# **MINIMIZING JITTER**

**Minimize multipath** 

**Equalize paths** 

**Uses fastest switch available** 

**Create dum network segments** 





The PCR is a signal sent from the encoder to the decoder to synchronize the decoder 27 MHz clock

The PCR is sent over standards 188bytes MPEG packets just like any other MPEG payload

PCR packets is sent at a fixed repetition rate





The PCR signal is carried over either a private PID, or embedded in the video PID

PCR occupies about 45 kbs

The PCR packets are sent at a minimum frequency

If the encoder doesn't sent PCR often enough, a PCR repetition error will be generated

PCR is required to be accurate within 226 Hz

If the result of PCR synchronization is not within limits a PCR accuracy error will be generated

If the some PCR packet s are delayed from a variable amount of time (typical of switched network) A PCR clock Jitter error will be recorded





## **PCR ISSUES**



#### Encoder











Encoder

Decoder













The PCR signal is carried over either a private PID, or embedded in the video PID

PCR occupies about 45 kbs

The PCR packets are sent at a minimum frequency

If the encoder doesn't sent PCR often enough, a PCR repetition error will be generated

PCR is required to be accurate within 226 Hz

If the result of PCR synchronization is not within limits a PCR accuracy error will be generated

If the some PCR packet s are delayed from a variable amount of time (typical of switched network) A PCR clock Jitter error will be recorded





# **TRANSPORT LAYER**

#### NEW WAYS TO CARRY TS IN IN OUTSIDE THE BROADCAST PLANT?

|                                   |                 | 0               | SI Model                                                                                                      |
|-----------------------------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------|
| $\overline{}$                     | Data unit       | Layer           | Function                                                                                                      |
| Host<br>layers<br>Media<br>layers | Data            | 7. Application  | Network process to application                                                                                |
|                                   |                 | 6. Presentation | Data representation, encryption and decryption, convert machine dependent<br>data to machine independent data |
|                                   |                 | 5. Session      | Interhost communication, managing sessions between applications                                               |
|                                   | Segments        | 4. Transport    | Reliable delivery of packets between points on a network.                                                     |
|                                   | Packet/Datagram | 3. Network      | Addressing, routing and (not necessarily reliable) delivery of datagrams<br>between points on a network.      |
|                                   | Bit/Frame       | 2. Data link    | A reliable direct point-to-point data connection.                                                             |
|                                   | Bit             | 1. Physical     | A (not necessarily reliable) direct point-to-point data connection.                                           |



# **UNICAST OR MULTICAST**

Unicast represent a private conversation, it implies a one for one relationship.





## **MULTICAST**

Presume a non private relationship between one stream and multiple clients.















# **VIRTUAL CHANNEL**

Global Variable identified by a number holding all pointers to a group of service selectable at the receiver

Imagine a system having 2 Videos (A,B) and 6 audio's (1 to 6) and 2 VBI signals

The virtual Channel table may look like this

Selecting any of these numbers will provide the associated services





## **VIRTUAL CHANNEL**

| Service | e distrib | ution ex | emple |      |           |      |      |
|---------|-----------|----------|-------|------|-----------|------|------|
| V Chan  | Vidéo     | A1       | A2    | A3   | <b>A4</b> | VBI  |      |
| 100     | 1         | 1        | 2     | 3    | 4         | 1    | 1    |
| 101     | 1         | 1        | 2     | 7    | 8         | none | 2    |
| 103     | 1         | 1        | 4     | 6    | 7         | 1    | none |
| 201     | 2         | 1        | 2     | none | none      | 2    | 3    |
| 202     | 2         | 1        | 4     | 7    | 3         | none | 4    |















# EPG + (ETT)



| Thême: les grands incompris<br>Ce soir Pascal recoit:<br>Le colonel Kadaphi, Bill Gates, Margaret Tacher et le<br>docteur Mailloux |
|------------------------------------------------------------------------------------------------------------------------------------|
| ОК                                                                                                                                 |





## VCHIP

Each Program is V-Chip coded in reference with the rating code applicable in the province (dynamic psip)

The Rating code is downloaded in the Static PSIP section (Regional Rating Tables)

Today's receiver have the US RRT hard coded (issue pending at CEMA & CRTC)





### **SYSTEM ISSUES**

**PSIP** is unique to each market

95 % of the PSIP is common to all program stream of the same root.

Static PSIP needs to be tailored to the local market.

Detailed RF information has to be entered in the static PSIP tables





#### **SYSTEM MANAGEMENT ISSUES**

If the info in The MGT is incorrect receiver may not lock up, generating a service call at the NAC

The Transmission Services staff have to be aware of each mux configuration at all times, otherwise they can't locate the faults.





### **TABLE STRUCTURE**







• Major Channel. The previously assigned, paired NTSC channel is the major channel number. See Section 6.3.1 for more detail and rare exceptions.

• Service Type. The service type selects DTV, NTSC, audio only, data, etc., and must be set as operating modes require. See Section 6.3.1.

• Modulation Mode. A code for the RF modulation of the virtual channel. See Section 6.3.2.

Source ID. The Source ID is a number that associates virtual channels to events on those channels. It typically is automatically updated by PSIP equipment or updated from an outside vendor. Proper operation of this feature should be confirmed. See Section 6.3.4.
Service Location Descriptor (SLD). Contains the MPEG references to the contents of each component of the programs plus a language code for audio (ISO 639-2, [9]). See Section 6.9. The PID values for the components identified here and in the PMT must be the same for the elements of an event/program. Some deployed systems require separate manual setup, but PID values assigned to a VC should seldom change.





#### **PSIP REPETITION REQUIREMENTS**



Figure 5.1 Recommended PSIP table cycle times.





Outline

**Multiple Access and Ethernet Intro** 

**Ethernet Framing** 

**CSMA/CD** protocol

**Exponential backoff** 





# HOW CAN WE KNOW SOMETHING WENT WRONG?

#### MONITORING



### **REAL-TIME WORLD REALITY**

# What happened already happened...

We need to understand what it To avoid reoccurence





### HOW DO YOU KNOW SOMETHING WENT WRONG

### A Stream Monitor can show-up a whole stack of transport & set-up errors

#### One of the most common is the MPEG Continuity Count error:

- Hidden in the of each MPEG packets a 4 bit counter called the continuity counter is present
- If any packets is dropped an ETR 290 layer 1 alarm will show up on your TS analyzer screen
- Mpeg continuity count error, expected 3 found 7
  - This means that you lost (7-3=4) packets or 4 packets plus a multiple of 16 as the counter may have overrunned a few times before the ts retrieved synch





# **MONITORING THE IP LAYER**

#### A sniffer program will:

- Capture and displays every things that happens in your segment
- Requires L1 visibility

| or         • Egression Obs. Apply           · Imm         Source         Destination         Proceed         Info           1335 147,758149         -242,200,238.160         102,168,10.103         242,200,238.414         TCP         Quarks         InffP/1.1 449 Not Found         InffP/1.1 449 Not Found           1335 147,758149         -242,200,238.160         102,168,10.103         244,200,238.414         TCP         Quarks         InffP/1.1 449 Not Found         InffP/1.1 449 Not Found           1335 147,778364         102,168,10.103         244,200,239.484         TCP         Quarks         Not Found         Seq.4585 Ack-5265 Mined/426 Lemo           1335 147,778364         102,168,10.103         24,200,239.48         TCP         Varadero-2 - http [AcK] Seq.458 Ack-12675 Mined/426 Lemo           1345 14,617961         198,78,200.126         102,168,10.103         24,200,238,160         TCP         Varadero-2 - http [AcK] Seq.458 Ack-12675 Mined/403 Lemo           1345 14,617961         198,78,200,126         102,168,10.103         102,168,10.103         TCP         Varadero-2 - http [AcK] Seq.449 Ack-2475 Mined/403 Lemo           1346 14,647997         198,18,20,103         199,78,200,126         TCP         4725 http [AcK] Seq.449 Ack-2475 Mined/403 Lemo           1346 14,647997         198,18,20,103         199,78,200,126         TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time         Source         Destination         Protocol         Mrd           1333 14, 77531         92, 168, 10.103         192, 168, 10.103         HTTP         NTTP/L1, 144 Not Found           1335 14, 77575         192, 168, 10.103         24, 200, 239, 14         TCP         4835 > MrL, 7653 × MrL, 64738 Len-0           1357 14, 77575         192, 168, 10.103         24, 200, 239, 14         TCP         4835 > MrL, 7653 × MrL, 64738 Len-0           1357 14, 77579         192, 168, 10.103         24, 200, 239, 14         TCP         4835 > MrL, 7653 × MrL, 64738 Len-0           1357 14, 77579         192, 168, 10.103         24, 200, 239, 34         TCP         4835 > MrL, 7653 × MrL, 64738 Len-0           1357 14, 77579         192, 168, 10.103         24, 200, 239, 48         TCP         4835 > MrL, 7653 × MrL, 64738 Len-0           1450 14, 776790         192, 168, 10.103         24, 200, 239, 48         TCP         4783 > MrL, 7651 × MrL, 64738 × MrL, 260           1451 14, 867031         192, 168, 10.103         24, 200, 230, 48         TCP         4783 > MrL, 7651 × MrL, 6451 × MrL, 640           1451 14, 867031         192, 168, 10.103         24, 200, 230, 48         TCP         4783 > MrL, 1421 × MrL, 6427 × MrL, 6400           1451 14, 867031         192, 168, 10.103         102, 168, 10.103         TCP         4785 > MrL, 6427 ×                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              | <u>⊈</u>  ∎∎ Q,Q                                                                                                                                                     | ч Ш I в                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 133         14.758140         24.200.238.160         192.168.10.103         HTTP         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133         1.7.58149         24.200.238.160         192.168.10.103         HTP         HTTP         HTTP <t< th=""><th>ter:</th><th></th><th>•</th><th>Expression Clear Apply</th><th></th><th></th></t<>                                                                                                                                                                                                                                                                        | ter:                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                            | Expression Clear Apply                                                                                                                                               |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1358 L4,77876         192,168,10.103         24,200,239,41         TCP         quusa > http [Ack] seq=346 ack=1261 Min-64275 Len=0           1358 L4,77870         192,168,10.103         24,200,239,34         TCP         quusa > http [Ack] seq=346 ack=1261 Min-64275 Len=0           1358 L4,77870         192,168,10.103         24,200,239,34         TCP         quusa > http [Ack] seq=346 ack=1261 Min-64275 Len=0           1358 L4,77830         192,168,10.103         24,200,239,34         TCP         4835 > http [Ack] seq=385 ack=4107 Win-65114 Len=0           1358 L4,77830         192,168,10.103         24,200,239,34         TCP         varader=2 > http [Ack] seq=385 ack=305 win-647475 Len=0           1454 L4,87501         192,168,10.103         24,200,239,168         TCP         Varader=2 > http [Ack] seq=346 ack=1057 win-65114 Len=0           1454 L6,87791         192,168,10.103         124,900,7415,015         TCP         TCP <th>1356 41,77875       192.166.10.103       24.200.239.41       TCP       quosa &gt; http [AcK] seq=346 Ack=261 win=6473 Len=0         1357 14,77876       192.166.10.103       24.200.239.41       TCP       quosa &gt; http [AcK] seq=346 Ack=261 win=6473 Len=0         1358 14,77876       192.166.10.103       24.200.239.34       TCP       4835 &gt; http [AcK] seq=336 Ack=355 win=64748 Len=0         1358 14,77876       192.166.10.103       24.200.239.34       TCP       4835 &gt; http [AcK] seq=336 Ack=355 win=64748 Len=0         1358 14,77870       192.166.10.103       24.200.239.44       TCP       varadero-2 &gt; http [AcK] seq=336 Ack=369 win=6473 Len=0         1358 14,77871       192.166.10.103       24.200.239.16       TCP       varadero-2 &gt; http [AcK] seq=346 Ack=748 win=6473 Len=0         1451 14,87973       192.166.10.103       24.200.238.10       TCP       Varadero-2 &gt; http [AcK] seq=346 Ack=748 win=6351 Len=0         1451 16,807961       199.766.10.103       64.78.200.126       TCP       Http &gt; Art05 Fttt, AcK] seq=347 Ack=349 win=6352 Len=0         1451 16,807971       192.166.10.103       192.166.10.103       TCP       Http &gt; Art05 Fttt, AcK] seq=347 Ack=349 win=6353 Len=0         1451 16,806381       116.155.30       192.166.10.103       TCP       Http &gt; Art05 Sttt, Ack] seq=349 Ack=3108 win=65535 Len=0         1454 18,807997       192.166.10.103       81.16.155.30</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | 1356 41,77875       192.166.10.103       24.200.239.41       TCP       quosa > http [AcK] seq=346 Ack=261 win=6473 Len=0         1357 14,77876       192.166.10.103       24.200.239.41       TCP       quosa > http [AcK] seq=346 Ack=261 win=6473 Len=0         1358 14,77876       192.166.10.103       24.200.239.34       TCP       4835 > http [AcK] seq=336 Ack=355 win=64748 Len=0         1358 14,77876       192.166.10.103       24.200.239.34       TCP       4835 > http [AcK] seq=336 Ack=355 win=64748 Len=0         1358 14,77870       192.166.10.103       24.200.239.44       TCP       varadero-2 > http [AcK] seq=336 Ack=369 win=6473 Len=0         1358 14,77871       192.166.10.103       24.200.239.16       TCP       varadero-2 > http [AcK] seq=346 Ack=748 win=6473 Len=0         1451 14,87973       192.166.10.103       24.200.238.10       TCP       Varadero-2 > http [AcK] seq=346 Ack=748 win=6351 Len=0         1451 16,807961       199.766.10.103       64.78.200.126       TCP       Http > Art05 Fttt, AcK] seq=347 Ack=349 win=6352 Len=0         1451 16,807971       192.166.10.103       192.166.10.103       TCP       Http > Art05 Fttt, AcK] seq=347 Ack=349 win=6353 Len=0         1451 16,806381       116.155.30       192.166.10.103       TCP       Http > Art05 Sttt, Ack] seq=349 Ack=3108 win=65535 Len=0         1454 18,807997       192.166.10.103       81.16.155.30                                                                                                                                                                                     |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1357 14,778707       102,168,10.103       24,200,239,34       TCP       4855 > http [2x,C] seq=358 AxL+3655 win=64748 Len=0         1358 14,77864       102,168,10.103       24,200,239,34       TCP       4855 > http [2x,C] seq=358 AxL+3655 win=64748 Len=0         1358 14,77864       102,168,10.103       24,200,239,48       TCP       4855 > http [2x,C] seq=358 AxL+3655 win=65114 Len=0         1358 14,77864       102,168,10.103       24,200,239,48       TCP       Varadero-> http [2x,C] seq=358 AxL+365 win=65114 Len=0         1358 14,77864       102,168,10.103       24,200,239,48       TCP       Varadero-> http [2x,C] seq=358 AxL+368 win=65114 Len=0         1354 14,77864       102,168,10.103       74,200,738,160       TCP       4748 > http [2x,C] win=56403 Len=0         1345 14,887951       192,168,10.103       74,200,738,160       TCP       4748 > http [2x,C] seq=3169 AxL+306 win=6512 Len=0         1345 14,887951       192,168,10.103       TCP       4748 > http [2x,C] seq=3100 AxL+306 win=6512 Len=0         1345 14,887951       192,168,10.103       TCP       http > 4772 [711, AxC] seq=3105 AxL+306 win=6512 Len=0         1345 14,887954       192,168,10.103       TCP       http > 4721 [711, AxC] seq=3105 AxL+306 win=6576 Len=0         1345 14,887954       192,168,10.103       TCP       http > 4721 [711, AxC] seq=3105 AxL+306 win=6571 Len=0         135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1357       137.168.10.103       24.200.239.34       TCP       4835 http [Ack] seq-385 Ack-3655 Min-64748 Len-0         1358       14.77830       192.168.10.103       24.200.239.34       TCP       4835 http [Ack] seq-385 Ack-3265 Min-64748 Len-0         1358       14.77831       192.168.10.103       24.200.239.44       TCP       4835 http [Ack] seq-385 Ack-3268 Win-65114 Len-0         1359       14.77831       192.168.10.103       24.200.239.48       TCP       Variadro-2 http [Ack] seq-385 Ack-3268 Win-65114 Len-0         1345       144.200.239.45       124.002.339.45       TCP       Variadro-2 http [Ack] seq-385 Ack-3268 Win-65114 Len-0         1345       144.200.239.160       124.002.339.160       TCP       Variadro-2 http [Ack] seq-345 Ack-3268 Win-65114 Len-0         1442       144.387941       192.768.10.103       24.200.238.160       TCP       Hdtp Ack] seq-3459 Ack-3675 Win-65403 Len-0         1443       164.09051       31.6.155.30       162.168.10.103       TCP       Hdtp Ack] seq-3459 Ack-3605 Win-6576 Len-0         1451       164.09051       31.6.155.30       192.168.10.103       TCP       Http Ack] seq-3100 Sak-6481 Win-1600 Len-0         1451       145.353874       112.16.353.30       TCP       Http Ack] seq-3100 Sak-6481 Win-1600 Len-0         1451       1456.355377       192.168.10.103 <th></th> <td></td> <td></td> <td></td> <td></td> <td>HTTP/1.1 404 Not Found</td>                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   | HTTP/1.1 404 Not Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1338 14.778804     102.168.10.103     24.200.239.34     TCP     4835 > http [AcK] Seq=385 Ack=107 win=6514 Len=0       1338 14.778804     102.168.10.103     24.200.239.34     TCP     waradero-2 > http [AcK] Seq=385 Ack=288 win=6514 Len=0       1348 14.778812     102.168.10.103     102.168.10.103     102.168.10.103     TCP     4835 > http [AcK] Seq=385 Ack=288 win=6514 Len=0       1349 14.778812     102.168.10.103     102.168.10.103     TCP     T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 138 14.778304       192.168.10.103       24.200.239.34       TCP       4835 http [Ack] sep-885 Ach=4107 Min+64179 Len-0         1378 14.778302       192.168.10.103       24.200.239.34       TCP       4835 http [Ack] sep-885 Ach=288 Min+65114 Len-0         1378 14.778302       192.168.10.103       24.200.239.34       TCP       4835 http [Ack] sep-885 Ach=288 Min+65114 Len-0         1378 14.778302       192.168.10.103       102.405.10010       TCP       HTD EXTRATISES MIN file Seminar of a rest scalad Set 2001         1378 14.778304       192.168.10.103       102.168.10.103       TCP       HTD EXTRATISES MIN file Seminar of a rest scalad Set 2001         1381 14.778304       192.168.10.103       102.168.10.103       TCP       HTD EXTRATISES MIN file Seminar of a rest scalad Set 2001         1381 16.907901       192.168.10.103       182.168.130.103       TCP       HTD EXTRATISES Len-0         1384 16.906951       81.26.135.30       TCP       HTD EXTRATISE MIN file Seminar of a rest 2001 Ache3250 Len-0         1384 18.90697       192.168.10.103       81.16.135.30       TCP       HTD EXTRATISE Len-0         1384 18.935879       192.168.10.103       81.16.135.30       TCP       HTD EXTRATISE Len-0         1384 18.935879       192.168.10.103       81.16.135.30       TCP       HTD EXTRATISES Len-0         1384 19.77997                                                                                                                                                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1539 14, 778812     192, 168, 10, 103     24, 200, 339, 48     TCP     waradero-2; http [Ack] Seq-385 Act-3288 wine5511 Len-0       1540 14, 778812     242, 200, 210, 10, 100     TCP     LCP Extraministic array activation of a residentic array activation of a residenti array activatio activation of a residentic array activat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 139         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         143         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| idto         idto <th< td=""><td>1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td></th<></td></th<>                                                                                                                                                                                                                                                                                                                                | 1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410         1410 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 141         4/4 (\$220)         107:165:10:10:10         2/4:200:230:45         TCP         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141         143         143         143         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1543         16.5,027601         192,166.10.03         192,166.10.103         TCP         http: ArX0 [FLN, Ack] see-347.4 Ack-349 win-6432 Len-0           1544         16.5,07601         192,166.10.03         192,166.10.103         TCP         http: ArX0 [FLN, Ack] see-347.4 Ack-349 win-6432 Len-0           1544         16.5,06081         116,153.30         192,166.10.103         TCP         http: ArX0 [FLN, Ack] see-349.4 Ack-300 win-6432 Len-0           1547         158.3583         116,153.01         192,166.10.103         TCP         http: ArX0 [FLN, Ack] see-349.9 Ack-300 win-676.2 Len-0           1547         158.35834         116,153.01         192,166.10.103         TCP         http: ArX1 [See-349.9 Ack-300 win-675.0 Len-0           1547         158.35834         11.6,153.01         TCP         http: ArX1 [See-4461 Ack-3000 win-65533 Len-0           1547         158.3584         11.6,153.01         TCP         Http: ArX1 [See-349.0 Ack-300 win-65533 Len-0           1549         157.9797         Trendmet_46:73:73         APP         who has 192,166.10.103 TcP         Http: ArX1 [See-349.2 Ack-320.0 win-6533 Len-0           1551         192,166.10.103         76,74,140.170         122,168.10.103 TCP         Http: ArX1 [See-349.2 Ack-320.7 win-1145 Len-0           1552         20,61249         76,74,140.170         72,164.10.107 TCP         4739 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 143         163         193, 78, 200, 126         192, 168, 10, 103         TCP         http > 74705         fttp ArX5         gene_2474         Ack-349 win-6432         Len-0           1444         164, 9977         192, 166, 10, 103         168, 78, 200, 126         TCP         http > 74705         http ArX5         gene_2474         Ack-349 win-6432         Len-0           1454         164, 9967         192, 166, 10, 103         162, 118, 10, 103         TCP         http > forpercommodial [FIN, Ack] seg-349 Ack-349 win-6432         Len-0           1454         164, 966811         81, 16, 155, 30         102, 1186, 10, 103         TCP         http > forpercommodial [FIN, Ack] seg-349 Ack-349 win-6432         Len-0           1451         18, 35834         81, 16, 155, 30         102, 1186, 10, 103         TCP         http > 4705         http > Ack] seg-348         Ack-349 win-6432         Len-0           1454         18, 393879         192, 166, 10, 103         TCP         Http > 471         TAN Ack] seg-348         Ack-3100 win-65535         Len-0           1454         18, 393879         192, 166, 10, 103         TCP         Http > 472         Yin Ack] Seg-3282         Ack-3100 win-65535         Len-0           1515         102, 702         76, 74, 140, 170         TCP         4721         Http > 4724 <th></th> <td></td> <td>192.168.10.103</td> <td>24.200.239.48</td> <td>TCP</td> <td>[TCP Dup ACK 1539#1] varadero-2 &gt; http [ACK] Seq=385 Ack=3288 win=6</td>                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 192.168.10.103                                                                                                                                                                                               | 24.200.239.48                                                                                                                                                        | TCP                                                               | [TCP Dup ACK 1539#1] varadero-2 > http [ACK] Seq=385 Ack=3288 win=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1544         16, 027997         192, 166, 10, 103         198, 78, 200, 126         TCP         4705         Http [AcK] Seg=349 Ack=2475 win=65535 Len=0           1545         16, 060683         192, 166, 10, 103         81, 16, 155, 30         192, 166, 10, 103         TCP         epotCommista [FIN, AcK] Seg=349 Ack=2475 win=65535 Len=0           1545         16, 060683         192, 166, 10, 103         81, 16, 155, 30         TCP         epotCommista [FIN, AcK] Seg=3026 Ack=3300 win=655111 Len=0           1547         18, 383879         192, 166, 10, 103         81, 16, 155, 30         TCP         Http > 472] [FIN, AcK] Seg=3026 Ack=3300 win=65531 Len=0           1548         18, 383879         192, 166, 10, 103         81, 16, 155, 30         TCP         472] % Intro [AcK] Seg=3026 Ack=3300 win=65533 Len=0           1548         164, 383679         192, 166, 10, 103         RCP         472] % Intro [AcK] Seg=3492 Ack=3206 win=65533 Len=0           1551         1551, 102, 757         TCP         472] % Intro [AcK] Seg=2492 Ack=32063 win=65535 Len=0           1552         152, 20, 2022         76, 74, 140, 170         192, 166, 10, 103         TCP         Http > 4738 [FIN, ACK] Seg=2427 Ack=32852 win=11145 Len=0           1552         152, 20, 2024         192, 166, 10, 103         76, 74, 140, 170         TCP         Http > 4738 [FIN, ACK] Seg=2427 Ack=32852 win=11145 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144 16, 927997         192, 166, 10, 103         198, 78, 200, 126         TCP         4705         Nttp         Xetp         Active 2475         Winne5535         Lene0           1454 16, 960681         81, 16, 155, 30         102, 168, 10, 103         TCP         http         xeportcommdata         Fith, Sem3439         Active 3263         Sem349         Sem449         Sem349         Sem349         Sem449         Sem449         Sem349         Sem449                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 145         165,960631         81,16,155,30         192,166,10,103         TCP         http > eportcommdata [FIN, AcK] seg-33499 Act-3026 whr-6376 Len-0           1464         16,660633         192,166,10,103         81,61,15,30         TCP         http > eportcommdata [FIN, AcK] seg-33499 Act-3026 whr-6376 Len-0           147         186,51534         61,16,15,33         192,166,10,103         TCP         http > AcK] seg-3105 Act-3026 whr-6376 Len-0           147         186,51534         61,16,15,33         192,166,10,103         TCP         http > AcK] seg-3105 Act-431 whr-2606 Len-0           1494         186,90057         Trendmet_Acf7473         TCP         http > AcK] seg-3205 Act-3026 whr-6376 Len-0           1550         159,10,779948         Trendmet_Acf7473         Trendmet_Acf7473         APA           1551         20,26120         76,74,140,70         192,166,10,103         TCP         http > 4703 [FIN, AcK] seg-3205 Act-3207 whr-1145 Len-0           1552         20,26120         76,74,140,70         76,74,140,170         TCP         4733 > http [AcK] seg-3207 Act-3238 whr-6533 Len-0           1552         20,26124         91,266,10,103         76,74,140,170         TCP         4733 > http [AcK] seg-327 Act-3238 whr-65533 Len-0           1552         20,212         51,20,212,20,21,20,20,20,27 Act-23,233 whr-65533 Len-0         TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145 16,960831         81,16,155,30         102,168,10,103         TCP         http > expericionmata [FIN, Ack] seg-3499 Ack-3026 Ark-3300 Mine5131 Len=0           145 16,960831         192,168,10,103         81,6,155,30         TCP         http > expericionmata [FIN, Ack] seg-3499 Ack-3026 Ark-3300 Mine5131 Len=0           145 18,831834         61,6,155,30         192,168,10,103         TCP         http > Ack] seg-3105 Ack-3626 Mine5130 Len=0           145 18,831834         61,6,155,30         192,168,10,103         TCP         http > Ack] seg-3105 Ack-3626 Mine510 Len=0           145 18,831834         61,6,155,30         192,168,10,103         TCP         http > Ack] seg-3105 Ack-4830 Mine5031 Len=0           145 19,779947         Trendmet_Aef73r3         Trendmet_Aef73r73         Trendmet_Aef73r73         Not bas 192,166,10,103         TCP           155 12,0,26120         76,74,140,170         TCP         http > Af793 [FIN, Ack] seg-3282 Ack-3227 Vin-1145 Len=0           155 20,26129         192,166,10,103         76,74,140,170         TCP         4793 > http [Ack] seg-3282 Ack-322 Vin-1145 Len=0           155 20,26120         192,166,10,103         76,74,140,170         TCP         4793 > http [Ack] seg-3282 Ack-322 Vin-1145 Len=0           155 20,26124         192,166,10,103         76,74,140,170         TCP         4793 > http [Ack] seg-3282 Ack-322 Vin-1145 Len=0           1                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 146 16, 600833         192, 166, 10, 103         81, 16, 153, 30         TCP         epotcommista > http [Ack] seg=3026 Ack=3300 wine5311 Len=0           147 18, 835834         81, 16, 153, 30         TCP         epotcommista > http [Ack] seg=3026 Ack=3300 wine5311 Len=0           148 18, 835879         192, 166, 10, 103         81, 16, 153, 30         TCP         4721 > http [Ack] seg=4641 Ack=3100 wine5533 Len=0           148 18, 835879         192, 166, 10, 103         81, 16, 153, 30         TCP         4721 > http [Ack] seg=6441 Ack=3100 wine5533 Len=0           1494 10, 77937         Trendet_4721.73         IntelCor_90:33:C0         APP         Who has 102, 168, 10, 103 TCP         192, 168, 10, 103 TCP           150 103, 79940         IntelCor_90:33:C0         Trendet_4672.473         TCP         4723 > http [Ack] seg=2027 Ack=3800 Wine5131 Len=0           1552 20, 261249         192, 168, 10, 103 TCP         76, 74, 140, 170         TCP         4793 > http [Ack] seg=2027 Ack=3853 win=65535 Len=0           1552 20, 261249         192, 168, 10, 103 TCP         76, 74, 140, 170         TCP         4793 > http [Ack] seg=2027 Ack=3853 win=65535 Len=0           1552 20, 261249         192, 168, 10, 103 TCP         76, 74, 140, 170         TCP         4793 > http [Ack] seg=2027 Ack=3853 win=65535 Len=0           theme trine trineCor_90:53:c0 (00:24:dis90:53:c0), bst: Tc: 144:24:74:73 (00:14:di:14e:74:733)         100:14:di:14e:74:7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1466 160,960883         192,166.10.103         81.16.157.30         TCP         epotcommidtars         http /AcX/         seq=3026 Ack=33500 whne55111 Len=0           1474 18,835874         81.16.157.30         TCP         http /Ar21 [FR,NcK] seq=3026 Ack=33500 whne55111 Len=0           1474 18,835879         192,168.10.103         TCP         http /Ar21 [FR,NcK] seq=3026 Ack=3300 whne55351 Len=0           1474 18,835879         192,168.10.103         TCP         Ar21 in http /AcX] seq=3026 Ack=3300 whne5535 Len=0           1474 18,835879         192,168.10.103         TCP         Ar21 [FR,NcK] seq=3026 Ack=3300 whne5535 Len=0           1474 18,79377         Trendret_der7ar3         Trendret_der7ar3         TCP         Ar21 [FR,NcK] seq=3026 Ack=3300 whne5535 Len=0           1552 20,261249         Trendret_der7ar3         Trendret_der7ar3         TCP         4723 http /Ack_3500 Star0           1552 20,261249         192,168.10.103         76,74.140.170         TCP         4793 http /Ack_3500 sq=2927 Ack=23653 whne5535 Len=0           Termet 1, Src: IntelCor_90:53:c0 (00:24:d6:95:33:c0), DSI: Trendret_4e:7a:73 (00:14:d1:4e:7a:73)         192.168.10.103 (SI = 10:103 (SI = 10:103)           Ttermet Protocol, Src: 192.168.10.103         76; Trendret_4e:7a:73 (00:14:d1:4e:7a:73)         1472.40.1002                                                                                                                                                                                                                                                   | 1544 1                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 147 18.835834         81.16.155.30         192.168.10.103         TCP         http > 4721 [rth, drk] sed=3105 Act-46481 wh-16060 Len-0           1484 18.835870         192.168.10.103         TCP         http > 4721 [rth, drk] sed=3105 Act-46481 wh-16060 Len-0           1484 18.835870         192.168.10.103         TCP         http > 4721 [rth, drk] sed=3105 Act-46481 wh-16060 Len-0           1494 18.835870         192.168.10.103         TCP         http > 4721 [rth, drk] sed=3106 wh-163535 Len-0           1150 10.770948         TTREACM_901370         TCP         http > 4721 [rth, drk] sed=3106 wh-16305.1           1512 10.761202         76.74.140.170         192.168.10.103         TCP         http > 4733 [rth, drk] sed=2927 Act-23853 wh-6535 Len-0           1512 10.761202         76.74.140.170         76.74.140.170         TCP         Http > 4733 [rth, drk] sed=2927 Act-23853 wh-65353 Len-0           1512 10.761202         76.74.140.170         TCP         Http > 4733 [rth, drk] sed=2927 Act-23853 wh-65353 Len-0           1512 10.761204         192.168.10.103         76.74.140.170         TCP         Http Act Sed=2927 Act-23853 wh-65353 Len-0           1512 10.761204         192.168.10.103         76.74.140.170         TCP         Http Act Sed=2927 Act-23853 wh-65535 Len-0           1512 10.761204         192.168.10.103         TCP         Http Act Sed=2927 Act-23853 wh-65535 Len-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 147 18.835834         81.65.155.30         102.168.10.103         TCP         http 5.4721         Fith act 271                                                                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 144 18,833879         192.168.10.103         81.16.15.30         TCP         4721         N thrtp         ZxX3         State         ZxX3         ZxX3         State         ZxX3         State         ZxX3         ZxX3 <thzx3< th="">         ZX14         ZX14</thzx3<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1448 18.833879         192.168.10.103         81.16.135.30         TCP         4721         Nttp [Ack] Seq=6481         Ack.31000         Mine5335         Len=0           1494 10.779937         Trendnet_467:3173         Title[Cor_90153:CO         ARP         Moh has 192.168.10.103         Title[20:168.10.103         Title[20:168.10.103 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td></td<> |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1440 19,779937         Trendnet_4e?7ar33         IntelCor_90:53:c0         APP         Who has 192,168.10.1037         Tell 192.168.10.1           1550 19,779948         IntelCor_90:53:c0         Trendnet_4e?7ar37         APP         Who has 192,168.10.1037         Tell 192.168.10.103           1551 20,701202         76,74.140.170         192.168.10.103         TCP         http: > 4793         FitTM, ACK] seq=23852         Ack=2927         Who lass 192,168.10.103         TCP         http: > 4793         FitTM, ACK] seq=23852         Ack=2927         Who lass 192,168.10.103         TCP         http: > 4793         FitTM, ACK] seq=23852         Ack=2927         Who lass 192,168.10.103         TCP         Http: > 4793         FitTM, ACK] seq=23872         Ack=23853         Who lass 192,168.10.103         TCP         Http: Ack         Ack=23853         Who lass 192,168.10.103<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1440 19,779937         Trendnet_4e:7a:73         IntelCor_90:53:00         ARP         Who has 192:168.10.103         Tell 192:168.10.1           1550 19,779948         IntelCor_90:53:00         Trendnet_4e:7a:73         ARP         Who has 192:168.10.103         Tell 192:168.10.103           1551 20,20120         76,74.140.170         192.168.10.103         TCP         http > 4793         FLN, ACK ] seg=2852         Ack=2927 whn=1145 Len=0           1552 20,20120         192.168.10.103         TCP         http > 4793         FLN, ACK ] seg=2852         Ack=2927 whn=1145 Len=0           1552 20,20120         192.168.10.103         TCP         http > 4793         FLN, ACK ] seg=2827 whn=5535 Len=0           *rame 1 (62 bytes on whre, 62 bytes captured)         TCP         tell whet_4e:7a:73         (00:14:d1/4e:7a:73)           *therneet Protocol, Src: 192.168.10.103, bst: 72.144.204.100         TC1 + 42(7a:173)         (TC1+42(7a):73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1546 1                                                                                              | 16.960883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |                                                                                                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1550         D;75948         IntelCor_90:53:c0         Trendmet_4e:7a:73         APP         192:168.10.103         fs at 00:24:d6:90:53:c0           1551         20:2102         76:74.140.170         192:168.10.103         TCP         HTtp > 4793         FINL ACK1         Seq:2927 Min-11145 Leno           1552         20:2102         76:74.140.170         TCP         4793         FINL ACK1         Seq:2927 Ack-23283 win-65533 Leno           1552         20:2102         70:74.140.170         TCP         4733         http > 4793         FINL ACK1         Seq:2927 Ack-23853 win-65533 Leno           1552         20:2102         70:74.140.170         TCP         4733         http > 473         FINL ACK1         Seq:2927 Ack-23853 win-65533 Leno           Thermet Finderocol, Src: 10:22.168.10.103         10:51         Trendmet_46:73:73         (00:14:d1:4:c73:73)         (01:4:d1:4:c73:73)           Theremet Finderocol, Src: 10:22.168.10.103         10:51         72:44:100         72:44:100         72:44:100         72:44:100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1550         0,779948         IntelCor_00153:c0         Trendmet_4e:7a:73         APP         192.168.10.103         1s at 00:241d6900153:c0           0551         0,701202         76.74.140.170         192.168.10.103         TCP         http > 4793         Fitu, ACX [seq=2827 Ack=232 KH=927 VH=11145 Len=0           1552         0,20120         76.74.140.170         TCP         4793         Fitu, ACX [seq=2827 Ack=23853 VH=11145 Len=0           1552         0,20120         79.74.140.170         TCP         4793         Fitu, ACX [seq=2827 Ack=23853 VH=11145 Len=0           1552         0,20124         5014.010         TCP         4793         Fiture Jack         Seq=2927 Ack=23853 VH=1145 Len=0           Thermet Fiture O         95.100         195.100.010         95.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010         195.100.010                                                                                                                                                                                                                      | 1546 1<br>1547 1                                                                                    | 16.960883<br>18.835834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.16.155.30                                                                                                                                                                                                 | 192.168.10.103                                                                                                                                                       | TCP                                                               | http > 4721 [FIN, ACK] Seq=31005 Ack=6481 win=16060 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1552 20.261249 192.168.10.103 76.74.140.170 TCP 4793 > http [Ack] seq=2927 Ack=23853 win=65535 Len=0<br>Frame 1 (62 bytes on wire, 62 bytes captured)<br>Ethernet II, Src: IntelCor_9053:c0 (00:24:d6:90:53:c0), Dst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Interence Protocol, Src: 192.168.10.103 (192.168:10.103), Dst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1552 20.261249 192.168.10.103 76.74.140.170 TCP 4793 > http [Ack] seq=2927 Ack=23853 win=65535 Len=0<br>=rame 1 (62 bytes on wine, 62 bytes captured)<br>zthernet II, src: IntelCor_90:53:c0 (00:24:d6:90:53:c0), bst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Internet Protocol, src: 192.168.10.10 (192.168.10.103), bst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1546 1<br>1547 1<br>1548 1                                                                          | 16.960883<br>18.835834<br>18.835879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.16.155.30<br>192.168.10.103                                                                                                                                                                               | 192.168.10.103<br>81.16.155.30                                                                                                                                       | TCP<br>TCP                                                        | http > 4721 [FIN, ACK] Seq=31005 Ack=6481 win=16060 Len=0<br>4721 > http [ACK] Seq=6481 Ack=31006 win=65535 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rame 1 (62 bytes on wire, 62 bytes captured)<br>thernet II, Src: intelCor_00:33:c0 (00:24:db;90:33:c0), Dst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Internet Protocol, Src: 102.16.8.10.103 (122.168.10.103), Dst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rame 1 (62 bytes on wire, 62 bytes captured)<br>thernet II, Src: IntelCor_90:53:c0 (00:24:d6:90:53:c0), Dst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Internet Protocol, Src: 192.168.01.03 (20:21.68:10.103), Dst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1546 1<br>1547 1<br>1548 1<br>1549 1                                                                | 16.960883<br>18.835834<br>18.835879<br>19.779937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.16.155.30<br>192.168.10.103<br>Trendnet_4e:7a:73                                                                                                                                                          | 192.168.10.103<br>81.16.155.30<br>IntelCor_90:53:c0                                                                                                                  | TCP<br>TCP<br>ARP                                                 | http > 4721 [FIN, ACK] Seq=31005 ACK=6481 win=16060 Len=0<br>4721 > http [ACK] Seq=6481 ACk=31006 win=65535 Len=0<br>who has 192.168.10.1037 Tell 192.168.10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sthernet II, Src: Intelcor_90:53:c0 (00:24:d6:90:53:c0), Dst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Internet Protocol, Src: 192.168.10.103 (192.168.10.103), Dst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sthernet II, \$rc: IntelCor_90:53:c0 (00:24:d6:90:53:c0), Dst: Trendnet_4e:7a:73 (00:14:d1:4e:7a:73)<br>Internet Protocol, Src: 192.168.10.103 (192.168.10.103), Dst: 72.14.204.100 (72.14.204.100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1546 1<br>1547 1<br>1548 1<br>1549 1<br>1550 1<br>1551 2                                            | 16.960883<br>18.835834<br>18.835879<br>19.779937<br>19.779948<br>20.261202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.16.155.30<br>192.168.10.103<br>Trendnet_4e:7a:73<br>IntelCor_90:53:c0<br>76.74.140.170                                                                                                                    | 192.168.10.103<br>81.16.155.30<br>IntelCor_90:53:c0<br>Trendnet_4e:7a:73<br>192.168.10.103                                                                           | TCP<br>TCP<br>ARP<br>ARP                                          | http: > 4721 [FIN, ACK] Sep=31005 Ack=6481 whn=16060 Len=0<br>4721 > http [AcK] Seq=6481 Ack=31006 whn=65535 Len=0<br>who has 192.166.10.103 7 tell 192.166.10.1<br>192.166.10.103 is at 00:241:d690:533:00<br>http: > 4799 [FIN, AcK] Seq=2382 Ack=2927 whn=1145 Len=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1546 1<br>1547 1<br>1548 1<br>1549 1<br>1550 1<br>1551 2<br>1552 2<br>Frame 1<br>Etherne            | 16.960883<br>18.835834<br>18.835879<br>19.779937<br>20.261202<br>20.261202<br>20.261249<br>1 (62 bytes on wire,<br>et 11, Src: IntelCor_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.16.155.30<br>192.168.10.103<br>Trendhet.4e:73.73<br>IntelCor_90:53:C0<br>76.74.140.170<br>192.168.10.103<br>62 bytes captured)<br>90:53:C0 (00:24:d6:90:53:C                                              | 192.168.10.103<br>81.16.155.30<br>IntelCor_90:53:c0<br>Trendnet_4e:7a:73<br>192.168.10.103<br>76.74.140.170<br>20), Dst: Trendnet_4e:                                | TCP<br>TCP<br>ARP<br>ARP<br>TCP<br>TCP<br>7a:73 (00               | http: x4721 [FIN, AK] 5e6=31003 AK=6481 wH=16060 Len=0<br>4721 > http: AcX] 5e6=6481 AC=3206 wH=5533 Len=0<br>Who has 192,168,10.1037 Tell 192,168,10.1<br>192,168,10.103 f at 01024050013370<br>Http: AX9 [FIN, AK9] 5e6=2382 AK6=877 wH=11145 Len=0<br>4795 > http://acx1_see=2967 AK6=23853 wH=65535 Len=0<br>14:d1:4e:7a:73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1546 1<br>1547 1<br>1548 1<br>1549 1<br>1550 1<br>1551 2<br>1552 2<br>rame 1<br>therne<br>interne   | 16.960883<br>18.835834<br>18.835879<br>19.779947<br>19.779948<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.2612000000000000000000000000000000000 | 81.16.155.30<br>192.168.10.103<br>Trendnet_4e:7a:73<br>IntelCor_90:53:c0<br>76.74.140.170<br>192.168.10.103<br>62 bytes captured)<br>90:53:c0 (00:24:d6:90:53:c<br>1.68.10.103 (192.168.10.10                | 192.168.10.103<br>81.16.155.30<br>Intelcor_90:53:c0<br>Trendnet_4e:73:73<br>192.168.10.103<br>76.74.140.170<br>c0), Dst: Trendnet_4e:<br>03), Dst: 72.14.204.10      | TCP<br>TCP<br>ARP<br>ARP<br>TCP<br>TCP<br>7a:73 (00<br>0 (72.14.2 | http: x 4721 [FIN, AK] 5e8-31003 Ack-5481 win-16060 Len-0<br>4721 b http://mcs/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1546 1<br>1547 1<br>1548 1<br>1549 1<br>1550 1<br>1551 2<br>1552 2<br>rame 1<br>therne<br>Interne   | 16.960883<br>18.835834<br>18.835879<br>19.779947<br>19.779948<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.261202<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.26120<br>20.2612000000000000000000000000000000000 | 81.16.155.30<br>192.168.10.103<br>Trendnet_4e:7a:73<br>IntelCor_90:53:c0<br>76.74.140.170<br>192.168.10.103<br>62 bytes captured)<br>90:53:c0 (00:24:d6:90:53:c<br>1.68.10.103 (192.168.10.10                | 192.168.10.103<br>81.16.155.30<br>Intelcor_90:53:c0<br>Trendnet_4e:73:73<br>192.168.10.103<br>76.74.140.170<br>c0), Dst: Trendnet_4e:<br>03), Dst: 72.14.204.10      | TCP<br>TCP<br>ARP<br>ARP<br>TCP<br>TCP<br>7a:73 (00<br>0 (72.14.2 | http: x 4721 [FIN, AK] 5e8-31003 Ack-5481 win-16060 Len-0<br>4721 b http://mcs/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks |
| 0 00 14 d1 4e 7a 73 00 24 d6 90 53 c0 08 00 45 00Nzs.\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1546 1<br>1547 1<br>1548 1<br>1549 1<br>1550 1<br>1551 2<br>1552 2<br>Trame 1<br>Etherne<br>Enterne | 10.900883<br>18.833634<br>18.833637<br>19.835677<br>19.779048<br>20.261249<br>20.261249<br>11.(52.Uytes on wire,<br>et II, Src: Intelcor,<br>et II, Src: Intelcor,<br>et Frotocol, Src: 192<br>Ission Control Protoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.16.155.30<br>192.168.10.103<br>Trendmet_46:73:73<br>176.740.790.79<br>192.168.10.103<br>62 bytes captured)<br>90:53:c0 (00:24:66:90.153:6<br>00:54:06:10.103 (192.168.10.11<br>0), Src Port: 4619 (4619), | 102.168.10.103<br>81.16.153.51<br>Trrendret.42:17173<br>175.74.140.170<br>175.74.140.170<br>100, Dst: Trendret_42:<br>03), Dst: 72.14.204.10<br>Dst Port: http (80), | TCP<br>TCP<br>ARP<br>ARP<br>TCP<br>TCP<br>7a:73 (00<br>0 (72.14.2 | http: x 4721 [FIN, AK] 5e8-31003 Ack-5481 win-16060 Len-0<br>4721 b http://mcs/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks/sage.aks |





### **MOBILE TELEVISION**

28/12/2013 Guy Bouchard, CBC



## **ALL ABOUT ME!**

#### Today's viewers wants to consume contents:

- The content they want to watch
  - <u>When they want to watch it</u>
  - Where they want to watch it
- Linear television is somewhat limited in this aspect. This presentation is all about what we can do about the <u>where</u> component.





#### A LOOK AT THE MOBILE MEDIA LANDSCAPE

#### **Real time mobile services:**

- FM Radio + RBDS (multicast)
- Cell Phone streaming (unicast)
- Wifi streaming (mostly unicast)





# **UNICAST VEHICLES**

Unicast transport vehicles carries a copy of the content for each requestor

#### **Typical from bi-directional environment**

- The cost model is linear. The more viewers the most ressources is tied-up.
  - Tends to overflow bandwidth limited pipes







# **MULTICAST VEHICLES**

Ties up the same volume of resources whether they have one client of a million.

- Typical of unidirectional environnement
- Quickly becomes bandwidth efficient







# **ATSC TO ATSC MOBILE**

ATSC is the North American Digital Television Standard, it is in use in USA Canada, Mexico, Korea and 19 other countries, it is aimed at:

- Providing a service that is spectrally compatible with NTSC
- Minimizing interference to NTSC
- Be spectrally efficient
- Delivering HDTV to fixed receiver





#### CHALLENGES OF A MOBILE ENVIRONMENT: DOPPLER







### CHALLENGE OF A MOBILE ENVIRONMENT: MULTIPATH







### CHALLENGES OF A MOBILE ENVIRONMENT

Multipath







#### **CHALLENGES OF A MOBILE ENVIRONNEMENT** Multipath Fading





genetically modification process











#### ANALOG TELEVISION HAD A BULLET PROOF SYNCHRONIZATION SYSTEM





### **MULTIPATH CANCELLATION**

#### Does it Rings a Bell to







#### ATSC ALSO HAS A SYNCH STRUCTURE





**ATSC Standard** 

ATSC Mobile

#### CBC (\*) Radio-Canada **ADAPTIVE TAP EQUALIZER**





### **ADAPTIVE TAP EQUALIZER**





#### DEFEATING INTERFERENCE INTERLEAVING





#### DEFEATING INTERFERENCE: INTERLEAVING





### **SIGNAL DE-INTERLEAVING**





#### DEFEATING INTERFERENCE FREE-RUNNING INTERLEAVED FEC

**Reed-salomon** 

ТСМ

TPC





#### MAXIMUM LIKELIHOOD DECODERS

Maximum likelihood decoding is a process by witch errors are corrected by a probability algorithm that makes educated guesses on the nature of the error

How long is this Fish? If your answer is wrong, what is the most likely error you may have done?







# **TURBO CODES**

Turbo is a forward error correction technique witch uses the MLD in an iterative manner, over witch already corrected signals are getting fed back to the input of the error corrector.







#### **TURBO CODES PERFORMANCE**







#### **TYPICAL RECEIVERS PERFORMANCE:**

Receiver Treshold (AWGN)ATSC:16.0 dBATSC Mobile ¼ FEC: 3.5 dB

ATSC Mobile <sup>1</sup>/<sub>2</sub> FEC: 7.0 dB

Ability to cope with Multipath:ATSC: echoes at – 3dB from -10 to + 15 us

ATSC Mobile: echoes at – 3dB from -10 to + 45 us

Doppler resistance: ATSC: 4 Hz

**ATSC Mobile 16 Hz** 





### IMPACT ON LEGACY RECEIVERS

From The RF standpoint: none

From the picture quality standpoint: there is a perceptible loss of quality due to the lower video rate that the use of ATSC Mobile dictates. This quality restriction will be applicable to all receivers tuning to this ATSC channels whether they decode the ATSC mobile signals or not.





# **MOBILE DTV RECEIVERS**















### ABOUT THE WHEN COMPONENT

All about ME!

- Today's viewers wants to consume:
  - The contents they want to watch
    - When they want to watch it
    - Where they want to watch it



# Storage is becoming a comodity, it now retails around 2.1 /GB

Watch for ATSC Non-Real-time Service in a Mobile device near you





## **VIDEO COMPRESSION**



181

28/12/2013 Guy Bouchard, CBC



## **VIDEO COMPRESSION**

Why Compress:

Because the resources required to transmit uncompressed Video is higher than analog and is clearly not cost efficient.

- CCIR 601 704 X 480 4:2:2 takes 243 MB/s
- SMPTE 292 1980 X 1080i30 tkes 1.485 Gbps

For satellite SCPC:

- 243MB/s X 2 bit/Hz (QPSK)/1/2 rate FEC 243 MHz (5 Ku band transponders)
- An Analog signal @ 9.2 MHz dev makes 20 MHz (Carson rule)





/

#### **Spectral content of an Image**







#### One image, its way too large







#### **Structured Macro-blocks**

MPEG-28X8



# MPEG-4 8X8 4X4 or 16X16











#### DCT

## **Time to Frequency transmform**



Ex Bank record vs a Quicken categorised report





D.C.T.

Original 8 X 8 Pixel block





| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
|---|---|---|---|---|---|---|---|
| 9 | 9 | 9 | 1 | 1 | 9 | 9 | 9 |
| 9 | 9 | 1 | 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 1 | 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 1 | 9 | 9 | 9 | 9 | 9 |
| 9 | 9 | 9 | 1 | 1 | 9 | 9 | 9 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |



Les coffécients are getting classified in frequency order, a picture such as a cartoon will have very few coofecients





## D.C.T.

| 7. | 5 | 3   | 0 | 0 | 0 | 0 | •0 |
|----|---|-----|---|---|---|---|----|
| 5  | 2 | 0.: | 0 | 0 | 0 | 0 | _0 |
| 4  | 1 | 0   | 0 | 0 | 0 | 0 | ►p |
| ٥  | 0 | 0   | 0 | 0 | 0 | 0 | _0 |
| 0  | 0 | 0   | 0 | 0 | 0 | 0 | _0 |
| đ  | 0 | 0   | 0 | 0 | 0 | 0 | Po |
| 0  | 0 | 0   | 0 | 0 | 0 | 0 | •0 |

A typewriter scal will deliver 64 coeficients, 38 in a row wich are null

| Z  | ▶5           | /3           | 70 | 0   | _0           | ۵. | _0        |
|----|--------------|--------------|----|-----|--------------|----|-----------|
| B  | 12           | <i>/</i> 0.1 | ø  | /   | ø            | Ø  | 20        |
| 4  | $\checkmark$ | ø            | ø  | ø   | ø            | 6  | ļo        |
| Ø. | ø            | ø            | ø  | ø   | $\checkmark$ | ø  | <u>_0</u> |
| ø  | ø            | ø            | Ø  | 6   | ø            | ø  | ļo        |
| ø  | ø            | Ø            | 6  | ø   | ø            | ø  | 0         |
| 6  | K            | $\checkmark$ | ø  | _ø⁄ | Ø            | _ø | 0         |

A Zig-zag scan still delivers 64 coeficients,, however we have 54 null coeficients in a row

Série 10, 7.9,5,5,4,2,3,0,0.2,1,0.1

As the tail of zeros is not transmitted the compression rate reachesde (64-11)/64 = 83 %





DCT





#### **Compression d'image**

#### **Temporal compression**, Motion Vectors



**Previous frame** 

**Current frame** 







#### Frame structure

A frame structure is required to allow some borrowing of information.



- > The structure defines 3 types of frame:
  - □ I (incident Frame ) is a complete frame
  - P (predicted or past frame) Is based on a prediction of what the previous frame was
  - B (Bi Directional) Borrows elements from both past and future frame





#### **Transmission order**







## Structure de trame

- A new term is defined the GOP is the distance in frames between
   2 I frames.
- The longuer the GOP, the best coding efficiency
- The Longuer the GOP the most ugly each individual frames

The longueur the Gop, the longuest latency

- The shortest the GOP, the best individual
- Frames quality.







## **Image Compression**

#### Image compression takes place in a dynamic manner:







## Masquage Vidéo



- Have you notice how fast superman moves?
- Have you notice if he was in focus while moving?

Probably not, but you would notice a picture freeze or a steppy motion much before.

When the encoder is faced with an allocation issue between giving bits to definition or motion, it will always favors the motion compensation





## **Entropy Coding**

- Variable Length Coding VLC
- Based on a probability scale
- The values that repeats themselves often get short codes assigned
- The value that don't repeat very often gets long codes assigned







## Vidéo Artifacts

#### > What you may see:

- Picture freeze
- Macroblocking
- Aliasing
- Washed-out Picture



What you may not see
Interférence





#### **H.264**

#### Profiles and Levels for particular applications

□ Profile : a subset of entire bit stream of syntax,

- different decoder design based on the Profile
  - Four profiles : Baseline, Main, Extended and High



| Profile  | Applications                                                                      |
|----------|-----------------------------------------------------------------------------------|
| Baseline | Video Conferencing<br>Videophone                                                  |
| Main     | Digital Storage Media<br>Television Broadcasting                                  |
| Extended | Streaming Video                                                                   |
| High     | Content contribution<br>Content distribution<br>Studio editing<br>Post processing |





#### **H.264 Profiles**

|                                                                 | Baseline | Main | Extended | High |
|-----------------------------------------------------------------|----------|------|----------|------|
| I & P Slices                                                    | X        | X    | x        |      |
| Deblocking Filter                                               | X        | X    | x        |      |
| <sup>1</sup> / <sub>4</sub> Pel Motion Compensation             | X        | X    | x        |      |
| Variable Block Size (16x16 to 4x4)                              | x        | x    | x        |      |
| CAVLC/UVLC                                                      | x        | X    | x        |      |
| Error Resilience Tools – Flexible MB<br>Order, ASO, Red. Slices | x        |      | x        |      |
| SP/SI Slices                                                    |          |      | x        |      |
| B Slice                                                         |          | X    | x        |      |
| Interlaced Coding                                               |          | X    | x        |      |
| CABAC                                                           |          | X    |          |      |
| Data Partitioning                                               |          |      | X        |      |





## **H.264 Profiles**

- Baseline Profile (BP): Primarily for lower-cost applications with limited computing resources, this profile is used widely in videoconferencing and mobile applications.
- Main Profile (MP): Originally intended as the mainstream consumer profile for broadcast and storage applications, the importance of this profile faded when the High profile was developed for those applications.
- Extended Profile (XP): Intended as the streaming video profile, this profile has relatively high compression capability and some extra tricks for robustness to data losses and server stream switching.
- High Profile (HiP): The primary profile for broadcast and disc storage applications, particularly for highdefinition television applications (this is the profile adopted into <u>HD DVD</u> and <u>Blu-ray</u> Disc, for example).
- High 10 Profile (Hi10P): Going beyond today's mainstream consumer product capabilities, this profile builds on top of the High Profile—adding support for up to 10 bits per sample of decoded picture precision.
- High 4:2:2 Profile (Hi422P): Primarily targeting professional applications that use interlaced video, this profile builds on top of the High 10 Profile—adding support for the 4:2:2 <u>chroma sub sampling</u> format while using up to 10 bits per sample of decoded picture precision.
- High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the High 4:2:2 Profile—supporting up to 4:4:4 chroma sampling, up to 14 bits per sample, and additionally supporting efficient lossless region coding and the coding of each picture as three separate color planes.
- > High 10 Intra Profile: The High 10 Profile constrained to all-Intra use.
- > High 4:2:2 Intra Profile: The High 4:2:2 Profile constrained to all-Intra use.
- > High 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use.
- CAVLC 4:4:4 Intra Profile: The High 4:4:4 Profile constrained to all-Intra use and to CAVLC entropy coding (i.e., not supporting CABAC).





|                 |                                  | Max video bit                          |                                                                            |                                                    |                                                    |                                                                          |                                                                                 |  |  |  |
|-----------------|----------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Level<br>number | Max<br>macroblocks<br>per second | Max frame<br>size<br>(macroblock<br>s) | Max video bit rate<br>(VCL) for Baseline,<br>Extended and Main<br>Profiles | Max video<br>bit rate<br>(VCL) for<br>High Profile | Max video bit rate<br>(VCL) for High 10<br>Profile | rate (VCL) for<br>High 4:2:2 and<br>High 4:4:4<br>Predictive<br>Profiles | Examples for high resolution @<br>frame rate<br>(max stored frames)<br>in Level |  |  |  |
| 1               | 1485                             | 99                                     | 64 kbit/s                                                                  | 80 kbit/s                                          | 192 kbit/s                                         | 256 kbit/s                                                               | 128x96@30.9 (8)<br>176x144@15.0 (4)                                             |  |  |  |
| 2               | 11880                            | 396                                    | 2 Mbit/s                                                                   | 2.5 Mbit/s                                         | 6 Mbit/s                                           | 8 Mbit/s                                                                 | 320x240@36.0 (7)<br>352x288@30.0 (6)                                            |  |  |  |
| 2.1             | 19800                            | 792                                    | 4 Mbit/s                                                                   | 5 Mbit/s                                           | 12 Mbit/s                                          | 16 Mbit/s                                                                | 352x480@30.0 (7)<br>352x576@25.0 (6)                                            |  |  |  |
| 2.2             | 20250                            | 1620                                   | 4 Mbit/s                                                                   | 5 Mbit/s                                           | 12 Mbit/s                                          | 16 Mbit/s                                                                | 352x480@30.7(10)<br>352x576@25.6 (7)<br>720x480@15.0 (6)<br>720x576@12.5 (5)    |  |  |  |
| 3               | 40500                            | 1620                                   | 10 Mbit/s                                                                  | 12.5 Mbit/s                                        | 30 Mbit/s                                          | 40 Mbit/s                                                                | 352x480@61.4 (12)<br>352x576@51.1 (10)<br>720x480@30.0 (6)<br>720x576@25.0 (5)  |  |  |  |
| 3.1             | 108000                           | 3600                                   | 14 Mbit/s                                                                  | 17.5 Mbit/s                                        | 42 Mbit/s                                          | 56 Mbit/s                                                                | 720x480@80.0 (13)<br>720x576@66.7 (11)<br>1280x720@30.0 (5)                     |  |  |  |
| 3.2             | 216000                           | 5120                                   | 20 Mbit/s                                                                  | 25 Mbit/s                                          | 60 Mbit/s                                          | 80 Mbit/s                                                                | 1280x720@60.0 (5)<br>1280x1024@42.2 (4)                                         |  |  |  |
| 4               | 245760                           | 8192                                   | 20 Mbit/s                                                                  | 25 Mbit/s                                          | 60 Mbit/s                                          | 80 Mbit/s                                                                | 1280x720@68.3 (9)<br>1920x1088@30.1 (4)<br>2048x1024@30.0 (4)                   |  |  |  |
| 4.1             | 245760                           | 8192                                   | 50 Mbit/s                                                                  | 62.5 M<br>bit/s                                    | 150 Mbit/s                                         | 200 Mbit/s                                                               | 1280x720@68.3 (9)<br>1920x1088@30.1 (4)<br>2048x1 <mark>024@30.0 (4)</mark>     |  |  |  |

Broadcast Technology Society



#### **HD coding efficiency**





## CBC Radio-Canada COMPRESSION D'IMAGES

MPEG-2 MP HL (Main Profile High Level)

La compression video est basée sur une analyse perceptuelle qui identifie des éléments redondants que le codeur retirera pour les réinsérer au niveau du décodeur





## **2012 VIDEO COMPRESSION STATUS**

**10** years after the finalization of H.264/AVC, encoders are still improving

#### New generation of encoders launched this year achieves :

- An excellent HD1080i quality, close to source quality, at 15Mb/s in 4:2:2 10 bits for contribution,
- 15% bitrate gain for broadcast and an additional 15% gain is targeted by end 2013
  - 7 Full HD1080i programs in DVB-S (34Mb/s) or 9 programs in DVB-S2 (46Mb/s) by end 2013

#### > 1ST VERSION OF **HEVC** STANDARD NEARLY FINALIZED.

Now is coming the "encoder makers know-how" time ! One goal : to make the best use of the toolbox





## **HEVC PERFORMANCE ANALYSIS**

#### Initial goal achieved :

- Same subjective quality with half the bitrate for HEVC model (Main profile) vs H.264/AVC model
- Best gains on higher resolutions and on low activity contents (sometimes more than 50%)



| Source type | Resolution        | Fram<br>e rate | Bitrate<br>saving<br>average<br>* | Bitrate<br>saving<br>min * | Bitrate<br>saving<br>max * |
|-------------|-------------------|----------------|-----------------------------------|----------------------------|----------------------------|
|             | 3840x2160<br>(4K) | 25             | 30.6%                             | 22.0%<br>(Ducks)           | 42.3%<br>(Old<br>town)     |
| Progressive | 1920x1080         | 50             | 29.2%                             | 17%<br>(Parkjoy)           | 46.3%<br>(Old<br>town)     |
|             | 1280x720          | 50             | 24.7%                             | 14.6%<br>(Parkjoy)         | 36.6%<br>(Old<br>town)     |

\* PSNR Bjøntegaard metric HM7.0 MP / JM18.3





## HEVC PERFORMANCE ANALYSIS

#### Why HEVC is better ?

- Large blocks up to 64x64 pixels
- Better adaptation to the image content, no over-partitioning inherent to a regular MB structure
- Advanced motion coding: able to capture more redundancy with less signaling data
- Accurate and efficient Intra coding









## **HEVC PERFORMANCE ANALYSIS**

#### **HEVC model computation time**

• Far from real-time on a Xeon processor core (range of x1000-3000)

## Why HEVC real-time implementation timeline should be faster than in H.264/MPEG4-AVC ?

- Entropy encoder well mastered
- Same High-level encoder architecture (hierarchical GOP structure)
- Parallelism tools included in the standard (Wavefront for entropy coding, Tiles)
- Same packetization layer (NAL)



## **CBC** Radio-Canada H.264/AVC – HEVC bitrates evolution plan for DTH







## **HEVC CURRENT LIMITATIONS**

- The "Main profile" only supports 4:2:0 8-bits contents for the time being.
  - Proposal to add a 4:2:0 10 bits profile in the first DIS (useful for 4K content)
  - Professional profiles (4:2:2 / 4:4:4) will be released in 2013
- The « Main profile » brings a limited support to interlaced formats :
  - PAFF (Picture Adaptive Frame Field) is limited at the sequence level with Closed-GOP constraints
  - Field coding is therefore not possible for I pictures when Frame coding is used in the sequence
  - no MBAFF for internal Frame-Field adaptation inside the pictures





## **OUR VISION OF HEVC DEPLOYMENT**

#### **OTT** applications : certainly the first user of HEVC in 2013

- Fast renewal of decoding devices
- Real-time SW implementations already demonstrated
- 50% bandwidth savings enables HD on mobile networks

#### 4:2:0 8-bits DSNG & 4:2:2 10-bits Contribution applications

- Will immediately take benefit of lower bandwidth
- No constraint of existing decoder park

#### IPTV

- Extended HD eligibility
- Need of cheap STBs

#### DTT

Legacy issues and display replacement may delay the introduction of HEVC
 DTH

• Replacement of existing decoder park, migration scenario TBD





## **THATS ALL FOLKS**

**Questions ?** 

**Guy Bouchard** 

Senior Manager, Broadcast & Signal Transport

**New Broadcast technologies** 

**CBC / Radio-Canada** 

guy\_bouchard @ieee.org



28/12/2013 Guy Bouchard, CBC