
1

Page 1

© 2003 by Carnegie Mellon University page 1

Software Quality Attributes:
Modifiability and Usability

Mario R. Barbacci

Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213
Sponsored by the U.S. Department of Defense
Copyright 2004 by Carnegie Mellon University

2

Page 2

© 2003 by Carnegie Mellon University page 2

Tutorial Objective

To describe a variety of software quality
attributes (e.g., modifiability, usability) and
methods to analyze a software architecture’s
fitness with respect to multiple quality
attribute requirements.

Software product characteristics:

•the interactions between quality, cost, and schedule

Software quality attributes:

•the concerns, factors, and methods used by different communities

Quality attribute analysis:

•Examples of quality attribute risks, sensitivities and tradeoffs

Indicators of quality attributes:

•component interaction and coupling are qualitative measures of
system quality

Processes to discover risks, sensitivities, and tradeoffs:

•Architecture Tradeoff Analysis Method (ATAM)®

•Quality Attribute Workshops (QAW)

® ATAM and Architecture Tradeoff Analysis Method are registered service
marks of Carnegie Mellon University

3

Page 3

© 2003 by Carnegie Mellon University page 3

Software Product Characteristics

There is a triad of user oriented product
characteristics:

• quality
• cost
• schedule

“Software quality is the degree to which
software possesses a desired combination of
attributes.”

[IEEE Std. 1061]

IEEE Std. 610.12 “Glossary of Software Engineering Terminology”:

“quality. (1) The degree to which a system, component, or process
meets specified requirements.

(2) The degree to which a system, component, or process meets
customer or user needs or expectations.”

“quality attribute. A feature or characteristic that affects an item's
quality. Syn: quality factor.”

IEEE Std. 1061 “Software Quality Metrics Methodology”:

•Establish software quality requirements

•Identify software quality metrics

•Implement the software quality metrics

•Analyze the software quality results

•Validate the software quality metrics

4

Page 4

© 2003 by Carnegie Mellon University page 4

Effect of Quality on Cost and
Schedule - 1
Cost and schedule can be predicted and
controlled by mature organizational
processes.

However, process maturity does not
translate automatically into product quality.

Poor quality eventually affects cost and
schedule because software requires tuning,
recoding, or even redesign to meet original
requirements.

If the technology is lacking, even a mature organization will have difficulty
producing products with predictable performance, dependability, or other
attributes.

For less mature organizations, the situation is even worse:

“Software Quality Assurance is the least frequently satisfied level 2
KPA among organizations assessed at level 1”,

From Process Maturity Profile of the Software Community 2001 Year
End Update, http://www.sei.cmu.edu/sema/profile.html

NOTE: The CMM Software Quality Assurance Key Process Area (KPA)
includes both process and product quality assurance.

Quality requires mature technology to predict and control attributes

5

Page 5

© 2003 by Carnegie Mellon University page 5

Effect of Quality on Cost and
Schedule - 2

The earlier a defect occurs in the development
process, if not detected, the more it will cost to
repair.
The longer a defect goes undetected the more
it will cost to repair.

[Barry Boehm et al, “Characteristics of Software Quality”, North-Holland,
1978.
Watts Humphrey, “A Discipline for Software Engineering”, Addison Wesley,
1995.]

start tLife-cycle stage

$$$
$$
$

6

Page 6

© 2003 by Carnegie Mellon University page 6

Effect of Quality on Cost and
Schedule - 3

The larger the project, the more likely it will be
late due to quality problems:

Project outcome Project size in function points
<100 100-1K 1K-5K >5K

Cancelled 3% 7% 13% 24%
Late by > 12 months 1% 10% 12% 18%
Late by > six months 9% 24% 35% 37%
Approximately on time 72% 53% 37% 20%
Earlier than expected 15% 6% 3% 1%

[Caspers Jones, Patterns of large software systems: Failure and success,
Computer, Vol. 28, March 1995.]

From C.Jones 95:

“Software management consultants have something in common with
physicians: both are much more likely to be called in when there are serious
problems rather than when everything is fine. Examining large software
systems -- those in excess of 5,000 function points (which is roughly 500,000
source code statements in a procedural programming language such as Cobol
or Fortran) -- that are in trouble is very common for management consultants.
Unfortunately, the systems are usually already late, over budget, and showing
other signs of acute distress before the study begins. The consultant
engagements, therefore, serve to correct the problems and salvage the system
-- if, indeed, salvaging is possible.”

“From a technical point of view, the most common reason for software
disasters is poor quality control. Finding and fixing bugs is the most expensive,
time-consuming aspect of software development, especially for large systems.
Failure to plan for defect prevention and use pretest defect-removal activities,
such as formal inspections, means that when testing does commence, the
project is in such bad shape that testing tends to stretch out indefinitely. In fact,
testing is the phase in which most disasters finally become visible to all
concerned. When testing begins, it is no longer possible to evade the
consequences of careless and inadequate planning, estimating, defect
prevention, or pretest quality control.”

7

Page 7

© 2003 by Carnegie Mellon University page 7

The Problems Are Getting Attention
From The Main Press

Op-Ed Contributor: Does Not Compute.
By NICHOLAS G. CARR
Published: January 22, 2005

“THE Federal Bureau of Investigation has officially entered what
computer professionals call "software hell." After spending $170
million to create a program that would give agents ready access to
information on suspected terrorists, the bureau admitted last week that
it's not even close to having a working system. In fact, it may have to
start from scratch….”

http://www.nytimes.com/2005/01/22/opinion/22carr.html

The article mentions companies that have had to cancel projects:

“Consider Ford Motor Company's ambitious effort to write new software
for buying supplies. Begun in 2000, … The new software was supposed
to reduce paperwork, speed orders and slash costs. …. When it was
rolled out for testing in North America, suppliers rebelled; …. many
found the new software to be slower and more cumbersome than the
programs it was intended to replace. Last August, Ford abandoned
Everest amid reports that the project was as much as $200 million over
budget.”

“A McDonald's program called Innovate was even more ambitious - and
expensive. Started in 1999 with a budget of $1 billion, the network
sought to automate pretty much the entire fast-food empire. Software
systems would collect information from every restaurant - …. - and
deliver it in a neat bundle to the company's executives, who would be
able to adjust operations moment by moment. … the project went
nowhere. In late 2002, McDonald's killed it, writing off the $170 million
that had already been spent.”

8

Page 8

© 2003 by Carnegie Mellon University page 8

Software Quality Attributes

There are alternative (and somewhat equivalent) lists
of quality attributes. For example:
IEEE Std. 1061 ISO Std. 9126 MITRE Guide to

Total Software Quality Control

Efficiency Functionality Efficiency Integrity

Functionality Reliability Reliability Survivability

Maintainability Usability Usability Correctness

Portability Efficiency Maintainability Verifiability

Reliability Maintainability Expandability Flexibility

Usability Portability Interoperability Portability

Reusability

9

Page 9

© 2003 by Carnegie Mellon University page 9

Quality Factors and Sub-factors

IEEE Std. 1061 subfactors:
Efficiency Portability

• Time economy • Hardware independence
• Resource economy • Software independence

Functionality • Installability
• Completeness • Reusability
• Correctness Reliability
• Security • Non-deficiency
• Compatibility • Error tolerance
• Interoperability • Availability

Maintainability Usability
• Correctability • Understandability
• Expandability • Ease of learning
• Testability • Operability

• Comunicativeness

From IEEE Std. 1061:

“Software quality is the degree in which software possesses a desired
combination of quality attributes. The purpose of software metrics is to make
assessments throughout the software life cycle as to whether the software
quality requirements are being met.

The use of software metrics reduces subjectivity in the assessment and control
of software quality by providing a quantitative basis for making decisions about
software quality.

However, the use of metrics does not eliminate the need for human judgment
in software assessment. The use of software metrics within an organization is
expected to have a beneficial effect by making software quality more visible.”

10

Page 10

© 2003 by Carnegie Mellon University page 10

Quality Factors and Sub-factors

ISO Std. 9126 sub characteristics:

Functionality Reliability
• Suitability • Maturity
• Accurateness • Fault tolerance
• Interoperability • Recoverability
• Compliance Usability
• Security • Understandability

Efficiency • Learnability
• Time behavior • Operability
• Resource behavior Portability

Maintainability • Adaptability
• Analyzability • Installability
• Changeability • Conformance
• Stability • Replaceability
• Testability

See Suryn et al. “Software Product Quality Practices: Quality Measurements
and Evaluation using TL9000 and ISO/IEC 9126” Software Technology and
Engineering Practice (STEP) 2002, Montreal, Canada, October 6-8, 2002.

TL 9000 Handbooks are designed specifically for the communications
industry to document the industry’s quality system requirements and
measures. ISO/IEC 9126 standards take the initial quality requirements
into account during each of the development phases, allowing for
quality planning, design, monitoring, and control.

Both TL 9000 and ISO/IEC 9126 offer process support for identification,
definition, measurement, and evaluation of software product quality.

11

Page 11

© 2003 by Carnegie Mellon University page 11

Values Are Context Dependent

Attributes values are not absolute e.g., a
system is more or less secure depending on
the threat.

Attribute evaluations must be performed
within specific context:

• intended uses
• operational environment

12

Page 12

© 2003 by Carnegie Mellon University page 12

Models Are Not Independent

Some attribute models are interdependent:

• there are parameters shared between
different models

• shared parameters provide an opportunity
to tradeoff between multiple attributes

• making tradeoffs might be necessary to
satisfy system requirements

13

Page 13

© 2003 by Carnegie Mellon University page 13

Performance
"Performance. The degree to which a
system or component accomplishes its
designated functions within given
constraints, such as speed, accuracy, or
memory usage.“
[IEEE Std. 610.12]

“Predictability, not speed, is the foremost
goal in real-time-system design”

[J.A. Stankovic, “Misconceptions About Real-Time Computing: A
Serious Problem for Next-Generation Systems,” IEEE Computer,
Volume 21, Number 10, October 1988.]

A misnomer is that performance equates to speed; that is, to think that poor
performance can be salvaged simply by using more powerful processors or
communication links with higher bandwidth.

Faster might be better, but for many systems faster is not sufficient to achieve
timeliness. This is particularly true of real-time systems

As noted in [Stankovic 88], the objective of “fast computing” is to minimize the
average response time for some group of services, whereas the objective of
real-time computing is to meet individual timing requirements of each service.

•Hardware mechanisms such as caching, pipelining and multithreading,
which can reduce average response time, can make worst-case
response times unpredictable.

•In general, performance engineering is concerned with predictable
performance whether its worst-case or average-case performance.
Execution speed is only one factor.

14

Page 14

© 2003 by Carnegie Mellon University page 14

Dependability

"Availability. The degree to which a system or
component is operational and accessible when
required for use.“

[IEEE Std. 610.12]

“Dependability is that property of a computer
system such that reliance can justifiably be
placed on the service it delivers”

[J.C. Laprie (ed.) “Dependability: Basic Concepts and Terminology”, Volume
5 of Dependable Computing and Fault-Tolerant Systems. Springer-Verlag,
February 1992.].

15

Page 15

© 2003 by Carnegie Mellon University page 15

Security

“Secure systems are those that can be
trusted to keep secrets and safeguard
privacy.”

[J. Rushby, Critical System Properties: Survey and Taxonomy, SRI
International, Technical Report CSL-93-01, May 1993]

16

Page 16

Extend security to include the ability to maintain some level of service in the
presence of attacks.

Success is measured in terms of the success of mission rather than in the
survival of any specific system or component.

© 2003 by Carnegie Mellon University page 16

From Security to Survivability
Large-scale, distributed systems cannot be totally
isolated from intruders - no amount of “hardening”
can guarantee that systems will be invulnerable to
attack.

We design buildings to deal with environment stress
such earthquakes as well an intentional attacks such
as a break-in.

We need to apply a similar approach to software
where the faults are malicious attacks.

17

Page 17

© 2003 by Carnegie Mellon University page 17

Modifiability

Modifiability encompasses two aspects:

“Maintainability. (1) The ease with which a software system
or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed
environment. (2) The ease with which a hardware system or
component can be retained in, or restored to, a state in
which it can perform its required functions.”

“Flexibility: The ease with which a system or component
can be modified for use in applications or environments
other than those for which is was specifically designed.”

[IEEE Std. 610.12]

18

Page 18

© 2003 by Carnegie Mellon University page 18

Modifiability Taxonomy

Modifiability Concerns Extensibility
Simplification
Restructuring
Time to deploy
Functional scalability
Functional flexibility

Factors Component complexity
Component size
Scope of modification

Methods Modularity
Encapsulation
Software practice

Concerns
• Extensibility - adding/enhancing/repairing functionality
• Simplification - streamlining/simplifying functionality
• Restructuring - rationalizing services,
modularizing/optimizing/creating reusable components
• Time to deploy - time taken from specifying a requirement
for new capability to the availability of that capability
• Functional scalability - ability to scale both up/down in
terms of users, system throughput, availability, etc.
• Functional flexibility - turning an existing capability to new
uses, new locations, or unforeseen situations

Factors
• Component complexity - in general the more complex the
components, the more difficult they are to change
• Component size - smaller components are generally
easier to modify than large ones
• Scope of modification - architecture level modifications are
more difficult; may involve a complete redesign with different
components and

interactions

Methods
• Modularity - partition a system into distinct modules
representing separate areas of functionality; a classical
modifiability technique

19

Page 19

© 2003 by Carnegie Mellon University page 19

Concerns in Modifiability - 1

Concerns Extensibility adding/enhancing/
repairing functionality

Simplification streamlining/simplifying
functionality

Restructuring rationalizing services,
modularizing/optimizing/
creating reusable
components

. . . .

20

Page 20

© 2003 by Carnegie Mellon University page 20

Concerns in Modifiability - 2

Concerns

Time to time taken from specifying a
deploy requirement for new capability to

the availability of that capability

Functional ability to scale both up/down in
scalability terms of users, system throughput,

availability, etc.

Functional turning an existing capability to
flexibility new uses, new locations, or

unforeseen situations

Functional flexibility must take advantage of the special characteristic of
software components (i.e. low cost of duplication, zero marginal cost of
transport) to provide the best possible fallback functionality.

Software applications should be designed and deployed in such a way that the
software components that they are built from could (in extreme circumstances)
be combined in new ways to construct new functionality.

21

Page 21

© 2003 by Carnegie Mellon University page 21

Factors in Modifiability

Component in general the more complex
Factors complexity the components, the more

difficult they are to change

Component smaller components are
size generally easier to modify

than large ones

Scope of architecture level modifications
modification are more difficult; may involve

a complete redesign with
different components and
interactions

22

Page 22

© 2003 by Carnegie Mellon University page 22

Methods in Modifiability - 1

partition a system into distinct
Methods Modularity modules representing separate

areas of functionality;
a classical modifiability technique

isolate system functionality within
Encapsulation a module to limit the effects of

changes within the module on
other components

Process ensure that the design process
oriented supports modifiability

23

Page 23

© 2003 by Carnegie Mellon University page 23

Usability

“Usability. The ease with which a user can
learn to operate, prepare inputs for, and
interpret outputs of a system or
component.”
[IEEE Std. 610.12]

Usability is a measure of how well users can take
advantage of some system functionality.

Usability is different from utility, a measure of
whether that functionality does what is needed.

24

Page 24

© 2003 by Carnegie Mellon University page 24

Usability Taxonomy
Usability Concerns Learnability

Efficiency
Memorability
Errors
Satisfaction

Factors Tradeoffs
Categories of users

Methods Usability Eng. lifecycle
Lifecycle stage methods
Architecture mechanisms

Jakob Nielsen, “Usability Engineering”, Academic Press, AP Professional,
Cambridge, MA, 1993.

Concerns
• Learnability - easy to learn; novices can readily start
getting some work done
• Efficiency - efficient to use; experts have a high level of
productivity
• Memorability - easy to remember; casual users do not
have to learn everything every time
• Errors - low error rate; users make few errors and can
easily recover from them
• Satisfaction - pleasant to use; discretionary/optional users
are satisfied when and like it

Factors
• Tradeoffs - depending on the situation, usability might

be increased or decreased on purpose
• Categories of users - depending on user experience,
usability might have to be tailored to the user

Methods
• Usability lifecycle - activities that take place during the
lifecycle of a product
• Lifecycle methods - techniques used in different lifecycle
stages
• Architecture mechanisms - components built into the
architecture of the system

25

Page 25

© 2003 by Carnegie Mellon University page 25

Concerns in Usability
Concerns Learnability easy to learn; novices can readily

start getting some work done

Efficiency efficient to use; experts have
a high level of productivity

Memorability easy to remember; casual users do
not have to learn everything every time

Errors low error rate; users make few errors
and can easily recover from them

Satisfaction pleasant to use; discretionary/optional
users are satisfied when and like it

26

Page 26

© 2003 by Carnegie Mellon University page 26

Factors in Usability

Factors Tradeoffs depending on the
situation, usability might
be increased or decreased
on purpose

Categories of depending on user
users experience, usability might

have to be tailored to the
user

Tradeoffs:
•Learning curves for systems that focus on novice or expert users.
•Accelerators or shortcuts are user interface elements that
allow the user to perform frequent tasks quickly.
•Efficiency might be sacrificed to avoid errors, Learnability
might be sacrificed for security or by hiding functions from
regular users

Categories of users depend on their experience
•Experience with the specific user interface
•Experience with computers
•Experience with the task domain

27

Page 27

© 2003 by Carnegie Mellon University page 27

Methods in Usability

Methods Lifecycle activities that take place
during the lifecycle of a
product

Methods techniques used in
different lifecycle stages

Mechanisms components built into
the architecture of the
system

Usability Engineering is a set of activities that take place throughout the
lifecycle of a product:

•It applies to the development of product lines and extended projects
where products are released in several versions over time.

•Early decisions have ripple effects — subsequent products and
versions must be backward compatible

28

Page 28

© 2003 by Carnegie Mellon University page 28

Factors: Learning Time Tradeoffs

Learning time

Focus on expert user

Focus on novice user

U
sa

g
e

p
ro

fi
ci

en
cy

 a
n

d
 e

ff
ic

ie
n

cy

[J. Nielsen, Usability Engineering, Fig. 2]

Learning curves for systems that focus on novice or expert users. J. Nielsen,
Usability Engineering, Fig. 2.

•It is not the case that a system is either easy to learn but inefficient or
hard to learn and efficient. A user interface can provide multiple
interaction styles:

•users start by using a style that is easy to learn

•later move to a style that is efficient
•Learnable systems have a steep rise at the beginning and allow users
to reach a reasonable level of proficiency within a short time.

Most systems have learning curves that start out with the user being able to do
very little at time zero, when they start using it.

Some systems are meant to be used only once and need to have zero learning
time:

• Walk-up-and-use (e.g., museum information systems, car-rental
directions to hotels)

• Systems that require reading instructions (e.g., installation programs,
disk formatting routines, tax preparation programs that change every
year)

29

Page 29

© 2003 by Carnegie Mellon University page 29

Factors: Accelerator Tradeoffs

Accelerators or shortcuts are user interface
elements that allow the user to perform
frequent tasks quickly, e.g.:
• function keys
• command name abbreviations
• double-clicking
• etc.

System can push users to gain experience:
• expert shortcuts in the novice menus
• On-line help
• analyze users’ actions and offer alternatives

Users normally don’t take the time to learn a complete interface before using it;
they start using it as soon as they have learned to do “enough” -- measures of
learnability should allow for this and not test for complete mastery of the
interface.

30

Page 30

© 2003 by Carnegie Mellon University page 30

Factors: Intentional Deficiency
Tradeoffs
Efficiency might be sacrificed to avoid errors, e.g.:

• asking extra questions to make sure the user is certain
about a particular action

Learnability might be sacrificed for security, e.g.:

• not providing help for certain functions e.g., not helping
with useful hints for incorrect user IDs or passwords

Learnability might be sacrificed by hiding functions
from regular users, e.g.:

• hiding reboot buttons/commands in a museum
information system

31

Page 31

© 2003 by Carnegie Mellon University page 31

Factors: Categories of Users

[J. Nielsen, Usability Engineering, Fig. 3]

E
xp

er
ie

nc
e

w
ith

 c
om

pu
te

rs

Experience with system

Exp
er

ien
ce

 w
ith

 do
main

minimal

extensive

Dimensions in which users’ experience differs, J. Nielsen, Usability
Engineering, Fig. 3

•Experience with the specific user interface is the dimension that is
normally referred to when discussing user expertise.

•In reality most people do not acquire comprehensive expertise
in all parts of a system, no matter how much they use it.

•Complex systems have so many features that a given user only
makes extensive use of a subset

•An expert could be a novice on parts of the system not normally
used by that user and need access to help for those parts of the
interface

•Experience with computers also has an impact on user interface
design. The same utility might have to be provided with two different
interfaces

•Utilities for system administrators vs. home computer users
(e.g., disk defragmentation

•Experience with other applications “carries over” since the
users have some idea of what features to look for and how the
computer normally deals with various situations (e.g., look for a
“sort” function on a new word processor because is common in
spreadsheets and databases)

•Programming experience determines to what extent the user
can customize the interface using macro languages in a way
that is maintainable and modifiable at a later date

•In addition, programmers’ productivity can range by a factor of
20!

32

Page 32

© 2003 by Carnegie Mellon University page 32

Prioritizing Quality Attributes

Quality attribute requirements are often in conflict.

Sometimes there is no easy easy way to satisfy ALL
quality attributes.

• Not all attributes are relevant to a system and some can
be discarded right away

• Remaining attributes can be ranked by importance
• Attributes that are above some threshold need to be

evaluated
• Evaluation techniques relevant to important attributes

must be quantifiable and testable

Jim Brosseau, http://www.clarrus.com/documents/Quality Attributes primer.pdf

33

Page 33

© 2003 by Carnegie Mellon University page 33

Step 1: Identify Qualities That Clearly
Do Not Apply

Attribute Interest Explicit requirements In/out
reliability user
robustness user
availability user
integrity user
flexibility user
usability user
interoperability user
efficiency user
testability developer
maintainability developer
reusability developer
portability developer

Notes:
Version 1.2
© 2002 Clarrus Consulting Group Inc.
Quality Attribute taxonomy from Karl Wiegers, Software Requirements, Microsoft Press, 1999

Jim Brosseau, http://www.clarrus.com/documents/Quality Attributes primer.pdf

34

Page 34

© 2003 by Carnegie Mellon University page 34

Step 2: Prioritize Remaining Attributes

If the left side attribute is more important, identify with a '<' character, otherwise use a '̂ ' character
The Rank column will automatically tally the results and pass along to the next sheet
Include or refer to this information in the Requirements Specification

Attribute In/Out Score re
lia

bilit
y

ro
bust

ne
ss

av
ail

ab
ilit

y
in

te
grit

y
fle

xib
ilit

y
usa

bi
lit

y
in

te
ro

per
ab

ilit
y

ef
fic

ien
cy

te
st

ab
ilit

y
m

ai
nt

ain
ab

ili
ty

re
usa

bi
lit

y
porta

bilit
y

reliability 0 11 < < < < < < < < < < <
robustness 0 0 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
availability 0 8 < ^ < < < < ^ < <
integrity 0 1 ^ ^ ^ ^ ^ ^ ^ ^
flexibility 0 9 < < < < ^ < <
usability 0 7 < < < ^ < <
interoperability 0 2 ^ ^ ^ ^ ^
efficiency 0 5 < ^ < ^
testability 0 4 ^ < ^
maintainability 0 10 < <
reusability 0 3 ^
portability 0 6

Version 1.2
© 2002 Clarrus Consulting Group Inc.
Quality Attribute taxonomy from Karl Wiegers, Software Requirements, Microsoft Press, 1999

Jim Brosseau, http://www.clarrus.com/documents/Quality Attributes primer.pdf

E.g., Usability has a score of 7:

Reliability –

Robustness +

Availability –

Integrity +

Flexibiltity -

Interoperability +

Efficiency +

Testability +

Maintainability –

Reusabiltity +

Portability +

Total 7+ (or 4 -)

35

Page 35

© 2003 by Carnegie Mellon University page 35

Step 3: Map Selected Attributes to
Quantifiable Criteria

For those attributes that are critical, select criteria to determine 'doneness' of attribute
Hide those attributes that are not included or are low priority
Hide those criteria that no longer satisfy any attributes
Add additional criteria that make sense for your organization, project, client, or product
Include or refer to this information in the Requirements Specification

Attribute

re
li

ab
il

it
y

av
ai

la
b

il
it

y

fl
ex

ib
il

it
y

u
sa

b
il

it
y

m
ai

n
ta

in
ab

il
it

y
Score 11 8 9 7 10

MTBF X X
MTTR X
GUI Standards X X
Response Times X
Inline code use X
Configurability X X
McCabe complexity X X
… and so on X X
… and so forth X
… as required X X

count 3 2 2 4 5
Notes:
Version 1.2
© 2002 Clarrus Consulting Group Inc.
Quality Attribute taxonomy from Karl Wiegers, Software Requirements, Microsoft Press, 1999

Next step is to set a threshold. We won’t worry about attributes below the
threshold!!

A threshold is not mandatory but the prioritization suggest that there some
attributes are more important than others.

From the scores in the previous slide, the attributes above the threshold are:
Reliability (11), Maintainability (10), Flexibility (9), Availability (8), and Usability
(7).

36

Page 36

© 2003 by Carnegie Mellon University page 36

Step 4: Identify Specific Quality
Measures

For each of the selected criteria, specify precise measures required for the application
The following are typical examples
Include this information explicitly in the Requirements Specification
 - these are part of your Non-Functional Requirements.

Criterion Measure

MTBF The system shall have a mean time between failure of at least 75 days
MTTR The system shall have a mean time to repair of less that 30 minutes

GUI Standards

The software shall conform completely for the GUI standards for
Microsoft Windows as published in <referred published standard>
version X, dated yyyy.

Response Times

The average time required to generate and display an online report shall
be less than 2 seconds, and no online reports shall take more than 5
seconds. For those that require more than 250 milliseconds, there shall
be graphical feedback to the user that th

.
Version 1.2
© 2002 Clarrus Consulting Group Inc.
Quality Attribute taxonomy from Karl Wiegers, Software Requirements, Microsoft Press, 1999

Jim Brosseau, http://www.clarrus.com/documents/Quality Attributes primer.pdf

The measures are scenarios that, when analyzed, can identify risks,
sensitivities, and tradeoffs.

37

Page 37

© 2003 by Carnegie Mellon University page 37

Impact of Software Architecture on
Quality Attributes

In large software systems, the achievement
of quality attributes is dependent not only
upon code-level practices (e.g., language
choice, algorithms, data structures), but
also upon the software architecture.

It is more cost effective to detect potential
software quality problems earlier rather than
later in the system life cycle.

When the software architecture is specified, designers need to
determine:

•the extent to which features of the software architecture influence
quality attributes

•the extent to which techniques used for one attribute support or conflict
with those of another attribute

•the extent to which multiple quality attribute requirements can be
satisfied simultaneously

38

Page 38

© 2003 by Carnegie Mellon University page 38

Interactions Between Stakeholders

Scenarios
Architecture
information

Attribute
models

Analysis
results

Requirements &
constraints

Attribute
experts

Risks,

sensitivities, &

tradeoffs

Users

Domain
experts

DevelopersArchitect

Other
stakeholders

Imagine the stakeholders sharing a blackboard:

•participants can provide or obtain information at any time

•participant can use information from any other participant

Stakeholders must identify the quality attribute requirements and constraints.

The architect provides architectural information including the components and
connections between components, showing the flow of data, and the the behavior —
underlying semantics of the system and the components, showing the flow of control.

Stakeholders propose scenarios describing an operational situation, a modification to
the system, a change in the environment, etc.

•Scenarios are used to explore the space defined by the requirements,
constraints, and architectural decisions. Scenarios define tests to be conducted
through architecture analysis

Some stakeholders (e.g., domain experts) identify models for evaluating quality
attributes. Some models are specific to certain quality attributes, other models are
applicable to multiple attributes.

Depending on the attributes of interest, there are different qualitative and quantitative
techniques to conduct the analysis: focus on system activities (e.g., latency,
availability), focus on user activities (e.g., time to complete a task), focus on the system
(e.g., modifiability, interoperability).

Depending on the attribute models and the architectural approaches, various risks,
sensitivities and tradeoffs can be discovered during the analysis:

•risks — alternatives that might create future problems in some quality attribute

•sensitivity points — alternatives for which a slight change makes a significant
difference in some quality attribute

•tradeoffs — decisions affecting more than one quality attribute

39

Page 39

© 2003 by Carnegie Mellon University page 39

The ATAM Process

An evaluation team moderates the
discussions, records the findings, and
presents a summary report to the participants:

• evaluation meeting(s) are short, 2~3 days, not
including preparation time for moderators and
stakeholders

• preparation time could extend over weeks, depending
on the work required e.g., negotiate with sponsors,
draft architectural documentation, availability of
participants

40

Page 40

© 2003 by Carnegie Mellon University page 40

ATAM Phase 1

Start

Steps 1-3:
ATAM
Presentations

Step 4:
Architectural
approaches

Step 5:
Utility tree
generation

Outcome:
Identified
architectural
approaches

Step 6:
Scenario
analysis

Outcome:
Quality attributes
and prioritized
scenarios

Outcome:
Risks,
sensitivities,
tradeoffs

ATAM Phase 1

Outcome:
Business
drivers and
architectural
styles

41

Page 41

© 2003 by Carnegie Mellon University page 41

ATAM Phase 2

Recapitulation
of ATAM Phase
1 Steps 1-6

Step 7:
Scenario
generation

Step 8:
Scenario
analysis

Outcome:
Prioritized
scenarios

Step 9:
Presentation
of results

Outcome:
Risks,
sensitivities,
tradeoffs

ATAM Phase 2

Outcome:
Understanding
of Phase 1
results

42

Page 42

© 2003 by Carnegie Mellon University page 42

Quality Attribute Workshops

The Quality Attributes Workshops (QAW)
are a variation of ATAM that is applicable
earlier in the life-cycle, before a complete
software architecture has been defined.

43

Page 43

© 2003 by Carnegie Mellon University page 43

The QAW Process

Activity:
Scenario
generation

Start

Activity:
QAW
Presentations

Activity:
Test case
development

Outcome:
prioritized,
refined
scenarios

Activity:
Test case
analysis

Outcome:
Architectural
test cases

Activity:
Presentation
of results

Outcome:
Analysis
results

yes

no

Outcome:
Additiona
l results

Stop?

Presentation of results meeting(s)Test case generation and analysisScenario generation meeting(s)

Create/modify
system
architecture

M.R. Barbacci, et al., Quality Attribute Workshops, 2nd Edition, (CMU/SEI-
2002-TR-019). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 2002.

The process can be organized into four distinct segments: (1) QAW
presentation, scenario generation, prioritization, and refinement; (2) test case
development; (3) analysis of test cases against the architecture; and (4)
presentation of the results.

The first and last segments of the process occur in facilitated one-day
meetings. The middle segments take place off-line and could continue over an
extended period of time.

The process is iterative in that the test case analyses might lead to the
development of additional test cases or to architectural modifications.
Architectural modifications might prompt additional test case analyses, etc.

There is a further iteration, not shown in the figure, in which test cases are
developed in batches, sequential analyses are performed, and each time, the
architecture is modified accordingly.

44

Page 44

© 2003 by Carnegie Mellon University page 44

ATAM and QAW Benefits

There are a number of benefits from
performing the ATAM or QAW processes:
• clarified quality attribute requirements
• improved architecture documentation
• documented basis for architectural decisions
• identified risks early in the life-cycle
• increased communication among stakeholders

The results are improved architectures.

45

Page 45

© 2003 by Carnegie Mellon University page 45

Requirements

Both methods rely critically on:
• appropriate preparation by the customer
• clearly-articulated quality attribute

requirements
• active stakeholder participation
• active participation by the architect
• evaluator familiarity with architectural

styles and analytic models

46

Page 46

© 2003 by Carnegie Mellon University page 46

ATAM and QAW Status

We have experience in using the methods
in a wide variety of application areas.

There is an ATAM handbook and a training
course to make process repeatable and
transitionable. Most of the material is
relevant to the QAW process.

Additional information available:

http://www.sei.cmu.edu/activities/ata

