Three Case Studies of High Reliability Power Systems

Keene M. Matsuda, P.E. Senior Member IEEE IEEE/PES Distinguished Lecturer ke.matsuda@ieee.org

Buenos Aires, Argentina

June 25 & 26, 2009

Project No. 1: H-3 Tunnel

- 1.6 km (1 mile) long, twin-bore tunnel thru Koolau mountains
- Part of 26-km highway in Honolulu, Hawaii
- Tunnel connects Halawa valley to west and Haiku valley to east
- Cost: \$1.3 billion (US) = 90% from FHWA + 10% from HDOT

Haiku Portal -Inbound Tunnel -Haiku Portal -Outbound Tunnel

Haiku Cross-Over Vault -7

4 Sources of power

For high reliability, 4 sources:
2 utility HV transmission circuits
1-500 kW emergency generator
Numerous UPS and battery/inverter units

Utility power source

- 2-46 kV HECO transmission lines for high reliability
- Radial circuits terminate at portal substations: Halawa & Haiku
- Separate substations for redundancy
- 10 MVA, 46-12.47 kV transformer, fully sized for redundancy

HECO 46 kV Incoming Ckt

HECO 10 MVA Substation

DANS

Emergency power sources

- Emergency diesel enginegenerator: 500 kW, 480 V
- UPS units (15 min. battery capacity): computer-type loads
- Fast transfer battery/inverter units (90 min. battery capacity): HID lighting

500 kW Emergency Generator

DL)

Emergency panelboards

12.47 kV switchgear system

Metal-clad switchgear
Vacuum circuit breakers
Draw-out
Electrically operated

12.47 kV Switchgear

480 V Switchgear

Switchgear 125 VDC Battery Bank & Charger

ale lo

C LINE AND LAND

C. I. I.

Split bus configuration

- Bus A = HECO Halawa H-3 substation
- Bus B = HECO Haiku H-3 substation
- Bus A tie feeder thru outbound tunnel via concrete duct bank
- Bus B tie feeder thru inbound tunnel via concrete duct bank
- Avoids coincident damage

Split bus configuration

Tunnel lighting feeders

2-12.47 kV tunnel lighting feeders 7-12.47 kV ATSs and 7-150 kVA, 12.47 kV-480 V transformers: **5** cross-passages: 1, 3, 5, 7, 9 2 cross-over vaults: Halawa & Haiku Electrically-operated contactors, fast transfer battery/inverter units

Batteries for Emergency Lighting

Tunnel lighting feeders

Approach from Halawa Valley

Exit to Haiku Valley

12.47 kV swgr interlocking

- Most significant reliability feature
- Auto restoration following HECO loss, feeder or bus fault
- Control wiring w/interposing relays between Halawa and Haiku swgr
- Most common failure loss of one HECO line

1 of 32 Tunnel Vent Fans

Loss of HECO restoration - 6

Loss of HECO restoration - 7

Loss of HECO restoration - 8

Local manual restoration

- Personnel required at both Halawa and Haiku swgr
- Local auto-manual switch (43AM)
- 43AM in manual to override switchgear automatic features
- Random operations will open and close other breakers

Remote manual restoration

Through control room computer
 43COMP is similar to local 43AM switch
 43COMP is a control relay
 Energize 43COMP relay = manual

12.47 kV relay settings

- Very inverse OC relays set for max loading
- Coordination very difficult, many combinations
- Special setting for instantaneous relays
- Large inrush current from many transformers

480 V load centers

- **Two 2,500 kVA, 12.47 kV -**480Y/277 V transformers Fully-sized, all 4 portal buildings Also split-bus configuration w/automatic restoration Restoration via local or remote

Project No. 2: Biosphere 2

Biosphere 2 is a 3.15 acre closed ecosystem with 5 biomes: **1. Desert** 2. Marsh **3. Savannah** 4. Rainforest **5.** Ocean

Project No. 2: Biosphere 2

- Original intent: experimentation for space travel
- Learn from sealing 8 people in closed system
- 1st mission: 2 years, September 1991
- Mission-critical: requires high reliability power system

Cogeneration power plant

Biosphere 2 cogeneration power plant produces: Electrical energy Hot water for heating Cold water for cooling Waste heat from engine captured to run absorption chiller

4.16 kV double bus swgr

- Heart of electrical system is 4.16 kV double-bus system
- Bus A & Bus B with metal-clad swgr
- Two buses located in separate electrical rooms
- Prevent coincident damage

Redundant 4.16 kV feeders

Four 4.16 kV feeders total
Bus A: two feeders, A1 & A2
Bus B: two feeders, B1 & B2
Only one feeder required to run Biosphere 2 experiment

Engine-generators, 4.16 kV

3 engine-generators, dual-fuel
Standby & prime: 5,250 kW total
G1, standby generator, 1,500 kW
G2, prime generator, 2,250 kW
G3, prime generator, 1,500 kW
2 generator breakers to Bus A & B

480 V double-ended subs

- Power plant parasitic loads from load center 27LC02
- Double-ended substation
- Two 2,000 kVA, 4160-480 V transformers, fully-sized
- Split bus configuration: main-tiemain

Utility as back-up

- Energy center generators provide primary power
 Electric utility serves as back-up
- One 3,750 kVA, 12.47-4.16 kV transformer
- Import of 50 kW, APTL controller

Future solar PV array

Provisions for 3rd power source:
500 kW solar photovoltaic array
DC to AC inverter
750 kVA, 480-4160 V step-up transformer

Project No. 3: Motorola

HV Distribution System Upgrade
Design/build for Motorola plant in Plantation, Florida
30-year-old electrical system
Failures: Al feeder cables and transformer

Project No. 3: Motorola

- Prime directive: keep production lines running
- Downtime costs: \$300,000 per hour
- Motorola required highly reliable power system

Old 13.2 kV utility

- Two FP&L services at 13.2 kV
 Shared with other customers
- 1. Vault with transformers & 480 V feeders
- 2. 13.2 kV fused switches & 13.2 kV feeders
- Radial feeders to transformers

New 23 kV distribution

- New 23 kV substation for two 23 kV FP&L feeders
- 23 kV permits higher power transfer
- Peak demand = 10 MW
- Dedicated feeders from FP&L substation

23 kV substation

- Dedicated electrical room
- Metal-clad swgr, 27 kV class, 750 MVA, 3 cycle, vacuum breakers
- Split-bus configuration: main-tiemain, fully redundant
- Provisions for 3rd bus for >15 MW load

23 kV FP&L vault

- Adjacent FP&L vault: HV switches, relays, meters
- Fiber optic link from FP&L substation
- Direct communication for breaker & relay status

Electronic relays

All relays: electronic solid-state
 Two main breakers had back-up relays

RS-232 link permitted uploading of settings

Switchgear control power

Combination of AC and DC power
AC: close vacuum circuit breakers
DC for critical loads:
1. Trip circuit breakers
2. PLC
3. Relays

Control power from PTs

AC control power from 2 PTs at both 23 kV buses
 One bus may be unavailable
 ATS to select either bus

DC power from batteries

DC power from battery banks
2 battery banks for increased reliability
ATS selects either battery bank
Primary: gel cell batteries
Secondary: sealed cell batteries

PLC

 PLC used to control swgr
 Actuates local annunciator board
 Sends automatic alarm to electrical personnel, pager on weekends

PLC alarms (partial list)

PLC internal failure Switchgear battery ground fault Switchgear DC bus failure Switchgear battery charger failure Main breaker relay failure Closed transition failure Air conditioner failure

PLC high output cards

- Increased reliability with direct tripping of breakers
 Use PLC high output cards
 Advantages: less time to trip, less component failure
- Old method: interposing relay

Closed transition transfer

 Unique: closed transition transfer (i.e., make-before-break)
 No interruption to plant
 Usually not allowed by utility
 Restrictions: 1 second, frequency check, synch check

Closed transition transfer

Normal configuration: split-bus, open bus-tie
If: loss of one FP&L feeder
Then: close bus-tie
Then: open main
Reverse upon return

Ground grid

- Highest quality ground: electrolytic ground rods
- Copper-clad steel ground rods at intermediate points
- Interconnected with bare copper conductors

Halo ground

- Added safety feature: halo ground
- Solid copper ground buses
- At ceiling, front & behind 23 kV swgr line-up
- Attach ground leads during maintenance, rack-out breakers

HV cables

- For 23 kV circuit, standard cable rating would be 25 kV
- Decrease HV stresses, next rating of 35 kV
- Shielded, EPR insulation, 100%, MV-105, copper

HV terminations

- Increased reliability: HV molded elbows
- Superior connection: cable to bus w/metal insert
- Contains HV corona

Old method: stress cone terminations with exposed energized surfaces

480 V double-ended subs

- Improved reliability, 480 V doubleended substations
- Split-bus: main-tie-main
- Fully-rated transformers, 23 kV-480 volts

Best cast coil transformers

- No spill containment
- No liquid (fire or environmental)
- Better surge capability, epoxy cast over coils
- Less space required, no fins
- Fewer maintenance tests (e.g., no dissolved gas-in-oil)

Closed transition transfer

- 480 V swgr repeats closed transition transfer function
- Could parallel 23 kV lines at 480 V swgr
- Safeguard: control wires as permissive in 480 V swgr PLC
- Check for status of 23 kV breakers

Transformer HV switch

- Transformer directly coupled to 23 kV fused air switch
- Fuse provides internal transformer fault protection
- Local disconnecting means for maintenance

Lightning arresters

- HV lightning arresters: transformer primary
- Metal-oxide, 15.8 kV
- Protects from damaging HV spikes & surges
- Added reliability: 2nd set of arresters, line side of switch

Summary: H-3 Tunnel

- 4 sources of power for critical loads
- Features: redundancy and flexibility
- Significant: 12.47 kV swgr interlocking
- Immediate auto restoration of power
- High reliability power system

Summary: Biosphere 2

4.16 kV dual-bus
Separate electrical rooms
Redundancy in 4 feeders
3 engine-generators
Utility as back-up
High reliability power system

Summary: Motorola

 Increase distribution voltage from 13.2 to 23 kV
 Split-bus 23 kV & 480 V swgr
 Double-ended substations
 PLC for closed transition transfer

Summary: Motorola

Cast-coil transformers
35 kV cables for 23 kV circuits
Molded elbows for HV terminations
Dual lightning arresters
High reliability power system

