

BUILDING A WORLD OF DIFFERENCE®

High Reliability Power System Design

Buenos Aires, Argentina June 25 & 26, 2009

Keene M. Matsuda, P.E.

Regional Electrical Manager Senior Member IEEE IEEE/PES Distinguished Lecturer ke.matsuda@ieee.org

Agenda

- 3 case studies for high reliability power systems
- Design concepts
- Start with basics for simple circuit design
- Considerations for temperature, safety, etc.
- Build system with transformers, switchgear, etc.
- Overall power system design
- 2008 National Electrical Code (NEC)
- "Bible" for designing electrical systems in USA

BUILDING A WORLD OF DIFFERENCE®

U.S. Typical System Voltages

- 120 V, for most small loads like laptops
- 120/240 V, 1-phase distribution
- 208Y/120 V, 3-phase distribution
- 480Y/277 V, 3-phase distribution
- 4.16Y/2.4 kV, 3-phase distribution
- 12.47Y/7.2 kV, 3-phase distribution
- Utility Distribution: 12 kV, 23 kV, 34.5 kV, etc.
- Utility Transmission: 46 kV, 60 kV, 115 kV, etc.
- All at 60 Hz

- BASIC ELEMENTS
- Load: 100 Hp pump for moving liquid
- Cables & Conduit: Conveys power, safely, from motor starter to pump
- Motor Overload: Provides protection to motor from overload conditions (e.g., bimetallic strip, electronic)
- Motor Contactor: Allows passage of power to motor from source
- Circuit Breaker (OCPD): Provides overload <u>and</u> short circuit protection

- Cables & Conduit: Conveys power, safely, from power source to motor starter
- Power Source: 480 V, 3-phase, 60 Hz
- Control: Not shown in single line diagram
- Control Methods: Level switch, flow sensor, pressure sensor, manual start/stop, automated control system, PLC, DCS, SCADA, etc.
- PLC = Programmable Logic Controller
- DCS = Distributed Control System
- SCADA = Supervisory Control and Data Acquisition

- DESIGN CALCULATIONS
- A. Determine full-load current, IFL
- **B. Size motor starter**
- C. Size overcurrent protection, breaker
- D. Size conductors for cables
- E. Size grounding conductor
- F. Size conduit for cables

- A. Determine Full-Load Current, IFL
- Three methods
- 1) Calculate from power source
- 2) Directly from motor nameplate
- 3) From NEC Table 430.250

• 1) Calculate IFL from power source:

kVA

IFL = ------Sq Rt (Phases) x Voltage

- Where, Phases = 3
- Where, Voltage = 480 V, or 0.48 kV
- Where, kVA = kW/PF
- Where, PF = Power factor, assume typical 0.85
- Where, kW = Hp x 0.746 kW/Hp

- Thus, kW = 100 Hp x 0.746 kW/Hp = 74.6 kW
- kVA = 74.6 kW/0.85 PF = 87.8 kVA
- And,

87.8 kVA IFL = ------ = 105.6 A Sq Rt (3) x 0.48 kV

- 2) IFL directly from motor nameplate:
- Depends on whether motor has been purchased to inspect motor nameplate
- Many different motor designs
- Results in different IFLs for exact same Hp
- High efficiency motors will have lower IFL
- Low efficiency and lower cost motors will have higher IFLs

- 3) IFL from NEC Table 430.250
- NEC Table 430.250 = Full-Load Current, Three-Phase Alternating-Current Motors
- Most common motor type = Induction-Type Squirrel Cage and Wound Rotor motors
- NEC Table 430.250 includes IFLs for various induction motor Hp sizes versus motor voltage
- Motor voltages = 115 V, 200 V, 208 V, 230 V, 460 V, and 575 V.

NEC Table 430.250, Motor Full-Load Currents

¹Table 430.250 Full-Load Current, Three-Phase Alternating-Current Motors

The following values of full-load currents are typical for motors running at speeds usual for belted motors and motors with normal torque characteristics.

The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110 to 120, 220 to 240, 440 to 480, and 550 to 600 volts.

	Induction-Type Squirrel Cage and Wound Rotor (Amperes)					Synchronous-Type Unity Power Factor* (Amperes)					
Horsepower	115 Volts	200 Volts	208 Volts	230 Volts	460 Volts	575 Volts	2300 Volts	230 Volts	460 Volts	575 Volts	2300 Volts
^{1/2} ^{3/4} 1 1 ^{1/2} 2 3 5 7 ^{1/2}	4.4 6.4 12.0 13.6	2.5 3.7 4.8 6.9 7.8 11.0 17.5 25.3	2.4 3.5 4.6 6.6 7.5 10.6 16.7 24.2	2.2 3.2 4.2 6.0 6.8 9.6 15.2 22	1.1 1.6 2.1 3.0 3.4 4.8 7.6 11	0.9 1.3 1.7 2.4 2.7 3.9 6.1 9					
10 15 20 25 30 40		32.2 48.3 62.1 78.2 92 120	30.8 46.2 59.4 74.8 88 114	28 42 54 68 80 104	14 21 27 34 40 52	11 17 22 27 32 41	 	 53 63 83	26 32 41	 21 26 33	
50 60 75 100 125 150 200	 	150 177 221 285 359 414 552	143 169 211 273 343 396 528	130 154 192 248 312 360 480	65 77 96 124 156 180 240	52 62 77 99 125 144 192	16 20 26 31 37 49	104 123 155 202 253 302 400	52 61 78 101 126 151 201	42 49 62 81 101 121 161	12 15 20 25 30 40
250 300 350 400 450 500	 	 	 	 	302 361 414 477 515 590	242 289 336 382 412 472	60 72 83 95 103 118		 	 	

BUILDING A WORLD OF DIFFERENCE®

IFL for 100 Hp, 460 V, Induction Type Motor

Horsepower	115 Volts	200 Volts	208 Volts	230 Volts	460 Volts
1/2	4.4	2.5	2.4	2.2	1.1
3/4	6.4	3.7	3.5	3.2	1.6
1	8.4	4.8	4.6	4.2	2.1
11/2	12.0	6.9	6.6	6.0	3.0
2	13.6	7.8	7.5	6.8	3.4
3		11.0	10.6	9.6	4.8
5		17.5	16.7	15.2	7.6
71⁄2	—	25.3	24.2	22	11
10		32.2	30.8	28	14
15		48.3	46.2	42	21
20		62.1	59.4	54	27
25		78.2	74.8	68	34
30		92	88	80	40
40	_	120	114	104	52
50	_	150	143	130	65
60		177	169	154	77
75		221	211	192	96
100		285	273	248	124
125		359	343	312	156
150		414	396	360	180
200		552	528	480	240

- Three methods, summary
- 1) Calculate from power source = 105.6 A
- 2) Directly from motor nameplate = Depends on motor design and efficiency
- 3) From NEC Table 430.250 = 124 A

• Why is there a difference?

- Three methods, summary
- 1) Calculate from power source >>>
 - a) Does not account for motor efficiency
 - b) Had to assume some typical power factor
 - c) Smaller Hp motors will have very low PF

- Three methods, summary
- 2) Directly from motor nameplate >>>

a) Most accurate

b) Actual motor may not be available to see nameplate

c) Usually the case when design is executed before equipment purchase and installation

d) Even after installation, motor may have to be replaced

e) New motor may be less efficient, or higher IFL

- Three methods, summary
- 3) From NEC Table 430.250 >>>

a) Most conservative, since IFL is usually higher

b) Avoids installing conductors for high efficiency motor (lower IFL), but may be too small for a replacement low efficiency motor (higher IFL)

c) This is safety consideration to prevent a fire

d) Use of IFL from table is <u>required</u> by NEC for sizing conductors

e) For 100 Hp, 460 V motor, IFL = 124 A

- B. <u>Size Motor Starter</u>
- U.S. uses standard NEMA class starter sizes
- Main difference is in size of motor contactor
- Motor contactor must be sized to carry full-load current and starting in-rush current (about 5.5 x IFL)
- Allows motor starter manufacturers to build starters with fewer different size contactors

• For 460 V, 3-phase motors:

NEMA Starter Size	<u>Max Hp</u>
1	10
2	25
3	50
4	100
5	200
6	400
7	600

• For 208 V, 3-phase motors:

NEMA Starter Size	<u>Max Hp</u>
1	5
2	10
3	25
4	40
5	75

 For same motor Hp, IFL is higher for 208 V vs. 460 V; thus, max Hp for 208 V is lower

- Size Motor Starter Summary
- For 100 Hp, 460 V, 3-phase motor:
- Motor starter size = NEMA Size 4

- C. <u>Size Overcurrent Protection, Breaker</u>
- Circuit breaker comes with combination motor starter
- Size is based on the motor IFL
- Minimum breaker size = IFL x 125%
- For 100 Hp, 460 V, 3-phase motor,
- Minimum breaker size = 124 A x 1.25 = 155 A
- Next higher standard available size = 175 A
- <u>Maximum</u> breaker size >>> per NEC

- NEC Table 430.52 = Maximum Rating or Setting of Motor Branch-Circuit Short-Circuit and Ground-Fault Protective Devices
- Depends on type of motor
- Depends on type of OCPD

NEC Table 430.52, Maximum OCPD for Motors

Table 430.52 Maximum Rating or Setting of Motor Branch-Circuit Short-Circuit and Ground-Fault Protective Devices

	Percentage of Full-Load Curre					
Type of Motor	Nontime Delay Fuse ¹	Dual Element (Time-Delay) Fuse ¹	Instantaneous Trip Breaker	Inverse Time Breaker ²		
Single-phase motors	300	175	800	250		
AC polyphase motors other than wound-rotor	300	175	800	250		
Squirrel cage — other than Design B energy-efficient	300	175	800	250		
Design B energy-efficient	300	175	1100	250		
Synchronous ³	300	175	800	250		
Wound rotor	150	150	800	150		
Direct current (constant voltage)	150	150	250	150		

- Per NEC Table 430.52,
- Maximum OCPD for 100 Hp, 460 V motor = IFL x 250%
- Maximum breaker size = 124 A x 2.5 = 310 A
- Next higher standard available size = 350 A

• Why the difference?

- Recall,
- Minimum breaker size = 175 A
- Maximum breaker size = 350 A
- To allow for motor starting in-rush = IFL x 5.5
- In-rush current = IFL x 5.5 = 124 A x 5.5 = 682 A
- 682 A exceeds 175 A and 350 A breaker, but breaker won't trip during normal starting of about 5 seconds
- Breaker is inverse time, not instantaneous, and allows <u>short-time</u> overcurrent conditions

- D. <u>Size Conductors for Cables</u>
- Conductors must be sized to carry full-load current, continuously
- Sizing criteria is based on IFL x 125%, again
- For 100 Hp, 460 V, 3-phase motor,
- Minimum conductor ampacity = 124 A x 1.25 = 155 A
- NEC Table 310.16 governs conductor ampacity

- NEC Table 310.16 = Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)
- includes ampacities for copper and aluminum conductors
- Standard engineering practice = use Cu conductors
- Includes temperature ratings of 60°C, 75°C, and 90°C
- Use 75°C because of rating of device terminations

BUILDING A WORLD OF DIFFERENCE®

NEC Table 310.16, Conductor Ampacity

Table 310.16 Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)

	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
		COPPER		ALUN	MINUM OR COP ALUMINUM	PER-CLAD I	Size AWG or kemil
18 16 14* 12* 10* 8	20 25 30 40	20 25 35 50	14 18 25 30 40 55	 20 25 30			 12** 10** 8
6	55	65	75	40	50	60	6
4	70	85	95	55	65	75	4
3	85	100	110	65	75	85	3
2	95	115	130	75	90	100	2
1	110	130	150	85	100	115	1
1/0	125	150	170	100	120	135	1/0
2/0	145	175	195	115	135	150	2/0
3/0	165	200	225	130	155	175	3/0
4/0	195	230	260	150	180	205	4/0
250	215	255	290	170	205	230	250
300	240	285	320	190	230	255	300
350	260	310	350	210	250	280	350
400	280	335	380	225	270	305	400
500	320	380	430	260	310	350	500
600	355	420	475	285	340	385	600
700	385	460	520	310	375	420	700
750	400	475	535	320	385	435	750
800	410	490	555	330	395	450	800
900	435	520	585	355	425	480	900
1000	455	545	615	375	445	500	1000
1250	495	590	665	405	485	545	1250
1500	520	625	705	435	520	585	1500
1750	545	650	735	455	545	615	1750
2000	560	665	750	470	560	630	2000

Page - 34

NEC Table 310.16, Conductor Ampacity

Table 310.16 Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)

	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	
Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	
		COPPER		ALUM	MINUM OR COP ALUMINUN	PER-CLAD A	Size AWG or kemil
18 16 14* 12* 10* 8	20 25 30 40	20 25 35 50	14 18 25 30 40 55	20 25 30			 12* 10* 8

- The U.S. uses a non-universal system for identifying conductor sizes
- AWG = American Wire Gage (higher the number, the small the conductor diameter)
- kcmil = Thousand circular mils (based on crosssectional area)
- A more universal method is to identify conductor sizes by the cross-sectional area of the conductor, using square millimeters, or mm²
- NEC Chapter 9, Table 8, Conductor Properties, has a translation table
NEC Chapter 9, Table 8, Conductor Properties

=						C	onductor	5				Direct-Cu	rrent Resist	ance at 7	5°C (167°F	0
				Str	runding	5		0	/erall			Co	pper			
	Size	A	rea		Diar	neter	Dian	neter	A	rea	Une	oated	Cor	ited	Alur	ninum
1	or kemil)	mm ²	ircular mils	Quantity	nam	in.	mm	in.	mm ²	in.2	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT
_	18 18	0.823 0.823	1620 1620	1 7	0.39	0.015	1.02 1.16	0.040 0.046	0.823 1.06	0.001 0.002	25.5 26.1	7.77 7.95	26.5 27.7	8.08 8.45	420 428	12.8 13.1
_	16 16	$\substack{1.31\\1.31}$	2580 2580	1 7	0.49	0.019	1.29 1.46	0.051 0.058	1.31 1.68	0.002 0.003	16.0 16.4	4.89 4.99	16.7 17.3	5.08 5.29	26.4 26.9	8.05 8.21
	14 14	2.08 2.08	4110 4110	1 7	0.62	0.024	1.63 1.85	0.064 0.073	2.08 2.68	0.003 0.004	10.1 10.3	3.07 3.14	10.4 10.7	3.19 3.26	16.6 16.9	5.06 5.17
	12 12	3.31 3.31	6530 6530	1 7	0.78	0.030	2.05 2.32	0.081 0.092	3.31 4.25	0.005 0.006	6.34 6.50	1.93 1.98	6.57 6.73	2.01 2.05	10.45 10.69	3.18 3.25
	10 10	5.261 5.261	10380 10380	1 7	0.98	0.038	2.588 2.95	0.102 0.116	5.26 6.76	0.008 0.011	3.984 4.070	1.21 1.24	4.148 4.226	1.26 1.29	6.561 6.679	2.00 2.04
	8	8.367 8.367	16510 16510	1 7	1.23	0.049	3.264 3.71	0.128 0.146	8.37 10.76	0.013 0.017	2.506 2.551	0.764 0.778	2.579 2.653	0.786 0.809	4.125 4.204	1.26 1.28
	6 4 3 2 1	13.30 21.15 26.67 33.62 42.41	26240 41740 52620 66360 83690	7 7 7 7	1.56 1.96 2.20 2.47 1.69	0.061 0.077 0.087 0.097 0.066	4.67 5.89 6.60 7.42 8.43	0.184 0.232 0.260 0.292 0.332	17.09 27.19 34.28 43.23 55.80	0.027 0.042 0.053 0.067 0.087	1.608 1.010 0.802 0.634 0.505	0.491 0.308 0.245 0.194 0.154	1.671 1.053 0.833 0.661 0.524	0.510 0.321 0.254 0.201 0.160	2.652 1.666 1.320 1.045 0.829	0.808 0.508 0.403 0.319 0.253
1.000 (1.000))))))))))))))))))))))))))))))))))	1/0 2/0 3/0 4/0	53.49 67.43 85.01 107.2	105600 133100 167800 211600	19 19 19 19	1.89 2.13 2.39 2.68	0.074 0.084 0.094 0.106	9.45 10.62 11.94 13.41	0.372 0.418 0.470 0.528	70.41 88.74 111.9 141.1	0.109 0.137 0.173 0.219	0.399 0.3170 0.2512 0.1996	0.122 0.0967 0.0766 0.0608	0,415 0,329 0,2610 0,2050	0.127 0.101 0.0797 0.0626	0.660 0.523 0.413 0.328	0.201 0.159 0.126 0.100
1.11.11.11.1.10	250 300 350	127 152 177		37 37 37	2.09 2.29 2.47	0.082 0.090 0.097	14.61 16.00 17.30	0.575 0.630 0.681	168 201 235	0.260 0.312 0.364	0.1687 0.1409 0.1205	0.0515 0.0429 0.0367	0.1753 0.1463 0.1252	0.0535 0.0446 0.0382	0.2778 0.2318 0.1984	0.0847 0.0707 0.0605
2	400 500 600	203 253 304	_	37 37 61	2.64 2.95 2.52	0.104 0.116 0.099	18.49 20.65 22.68	0.728 0.813 0.893	268 336 404	0.416 0.519 0.626	0.1053 0.0845 0.0704	0.0321 0.0258 0.0214	0.1084 0.0869 0.0732	0.0331 0.0265 0.0223	0.1737 0.1391 0.1159	0.0529 0.0424 0.0353
	700 750 800	355 380 405		61 61 61	2.72 2.82 2.91	0.107 0.111 0.114	24.49 25.35 26.16	0.964 0.998 1.030	471 505 538	0.730 0.782 0.834	0.0603 0.0563 0.0528	0.0184 0.0171 0.0161	0.0622 0.0579 0.0544	0.0189 0.0176 0.0166	0.0994 0.0927 0.0868	0.0303 0.0282 0.0265
_	900 1000 1250	456 507 633	Ξ	61 61 91	3.09 3.25 2.98	0.122 0.128 0.117	27.79 29.26 32.74	1.094 1.152 1.289	606 673 842	0.940 1.042 1.305	0.0470 0.0423 0.0338	0.0143 0.0129 0.0103	0.0481 0.0434 0.0347	0.0147 0.0132 0.0106	0.0770 0.0695 0.0554	0.0235 0.0212 0.0169
	1500 1750 2000	760 887 1013	=	91 127 127	3.26 2.98 3.19	0.128 0.117 0.126	35.86 38.76 41.45	1.412 1.526 1.632	1011 1180 1349	1.566 1.829 2.092	0.02814 0.02410 0.02109	0.00858 0.00735 0.00643	0.02814 0.02410 0.02109	0.00883 0.00756 0.00662	0.0464 0.0397 0.0348	0.0141 0.0121 0.0106

Table 8 Conductor Properties

BUILDING A WORLD OF DIFFERENCE®

NEC Chapter 9, Table 8, Conductor Properties

Size	Ar	cn –
(AWG or kemil)	mm ²	ircular mils
18	0.823	1620
18	0.823	1620
16 16	$\substack{1.31\\1.31}$	2580 2580
14	2.08	4110
14	2.08	4110
12	3.31	6530
12	3.31	6530
10	5.261	10380
10	5.261	10380
8	8.367 8.367	16510 16510
6 4	$13.30 \\ 21.15$	26240 41740
3	26.67	52620
2	33.62	66360
1	42.41	83690

	Size	A	rea
	(AWG or kemil)	(mm²	ircular mils
Constraint Constraints	1/0 2/0 3/0 4/0	53.49 67.43 85.01 107.2	105600 133100 167800 211600
	250 300 350	127 152 177	
	400 500 600	203 253 304	
	700 750 800	355 380 405	
	900 1000 1250	456 507 633	_
	1500 1750 2000	760 887 1013	_

- For 100 Hp, 460 V, 3-phase motor,
- Minimum conductor ampacity = 124 A x 1.25 = 155 A
- Minimum conductor size = 2/0 AWG (67.43 mm²)
- Ampacity of 2/0 AWG (67.43 mm²) = 175 A

Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW
		COPPER
18 16 14* 12* 10* 8	20 25 30 40	20 25 35 50
6 4 3 2 1	55 70 85 95 110	65 85 100 115 130
1/0 2/0 3/0 4/0	125 145 165 195	150 175 200 230

- Cables for 480 V power circuits are available with standard 600 V class cables
- Cables must be suitably rated for dry, damp, or wet conditions
- For above ground applications, dry and damp rated cables are acceptable
- For underground ductbank applications, dry and wet cables are essential
- Many different kinds of 600 V insulation/jacket type cables are available

- The four most common 600 V cables are as follows:
- RHW = Flame-retardant, moisture-resistant thermoset
- THHN = Flame-retardant, heat-resistant, thermoplastic
- THWN = Flame-retardant, moisture- and heatresistant, thermoplastic
- XHHW = Flame-retardant, moisture-resistant, thermoset

- Standard engineering practice is to use heavy duty cables for reliability and fewer chances for failures
- For all power circuits, use XHHW-2, 90°C wet and dry (cross-linked thermosetting polyethylene insulation)
- For small lighting and receptacle circuits, use THHN/THWN, 90°C dry, 75°C wet

- E. <u>Size Grounding Conductor</u>
- Grounding conductor is very, very important
- Required for ground fault return path to upstream circuit breaker (or OCPD)
- Breaker must sense the fault and trip in order to clear the fault
- Or, if a fuse, the fuse element must melt through
- NEC Table 250.122 governs the minimum size of grounding conductors

- NEC Table 250.122 = Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment
- Standard engineering practice is to use Cu conductors for both power and grounding
- Size of grounding conductors is based on rating of upstream breaker, fuse (or OCPD)
- Why?
- If grounding conductor is too small (and therefore higher impedance), the OCPD may not detect the ground fault return

NEC Table 250.122, Grounding Conductors

Table 250.122 Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment

Rating or Setting of Automatic Overcurrent	Size (AW)	G or kemil)
of Equipment, Conduit, etc., Not Exceeding (Amperes)	Соррег	Aluminum or Copper-Clad Aluminum*
15	14	12
20	12	10
30	10	8
40	10	8
60	10	8
100	8	6
200	6	4
300	4	2
400	3	1
500	2	1/0
600	1	2/0
800	1/0	3/0
1000	2/0	4/0
1200	3/0	250
1600	4/0	350
2000	250	400
2500	350	600
3000	400	600
4000	500	800
5000	700	1200
6000	800	1200

- For 100 Hp, 460 V, 3-phase motor:
- <u>Minimum</u> size breaker in starter = 175 A
- Next higher size breaker in NEC 250.122 = 200 A
- Then, grounding conductor = 6 AWG (13.30 mm²)

- <u>Maximum</u> size breaker in starter = 350 A
- Next higher size breaker in NEC 250.122 = 400 A
- Then, grounding conductor = 3 AWG (26.67 mm²)

Table 250.122 Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment

Rating or Setting of Automatic Overcurrent Davies in Circuit Abord	Size (AWG or kemil)						
of Equipment, Conduit, etc., Not Exceeding (Amperes)	Copper	Aluminum or Copper-Clad Aluminum*					
15	14	12					
20	12	10					
30	10	8					
40	10	8					
60	10	8					
100	8	6					
Min 200	6	4					
300	4	2					
Max 400	3	1					
500	2	1/0					
600	1	2/0					
800	1/0	3/0					

- For most motor applications, the minimum sizing calculation is adequate (using IFL x 125%)
- Concern would only be with motor starters that take an excessive amount of time to start
- Thus, grounding conductor = 6 AWG (13.30 mm²)

- F. <u>Size Conduit for Cables</u>
- Size of conduit depends on quantity and size of cables inside
- First, calculate cross-sectional area of all cables in the conduit
- Different cable manufacturers produce cables with slightly different diameters
- If actual cable data sheet is available, then those cable diameters can be used
- If not, such as during design, the NEC Table is used

- NEC Chapter 9, Table 5 = Dimensions of Insulated Conductors and Fixture Wires, Type XHHW
- Table includes cable diameter and cable crosssectional area
- Select cable cross-sectional area since we have to calculate based on cable areas and conduit areas

NEC Chapter 9, Table 5, Cable Dimensions

	Size (AWC or	Approxima	te Diameter	Approximate Area				
Type	kemil)	mm	in.	mm^2	in. ²			
	Туре	KF-1, KF-2, KF	F-1, KFF-2, XHH, X	HHW, XHHW-2, ZW				
XHHW, ZW,	14	3.378	0.133	8.968	0.0139			
XHHW-2, XHH	12	3.861	0.152	11.68	0.0181			
	10	4.470	0.176	15.68	0.0243			
	8	5.994	0.236	28.19	0.0437			
	6	6.960	0.274	38.06	0.0590			
	4	8.179	0.322	52.52	0.0814			
	3	8.890	0.350	62.06	0.0962			
	2	9.703	0.382	73.94	0.1146			
XHHW, XUUW 2 XUU	1	11.23	0.442	98.97	0.1534			
лпп 11-2, лпп	1/0	12.24	0.482	117.7	0.1825			
	2/0	13.41	0.528	141.3	0.2190			
	3/0	14.73	0.58	170.5	0.2642			
	4/0	16.21	0.638	206.3	0.3197			
	250	17.91	0.705	251.9	0.3904			
	300	19.30	0.76	292.6	0.4536			
	350	20.60	0.811	333.3	0.5166			
	400	21.79	0.858	373.0	0.5782			
	500	23.95	0.943	450.6	0.6984			
	600	26.75	1.053	561.9	0.8709			
	700	28.55	1.124	640.2	0.9923			
	750	29.41	1.158	679.5	1.0532			
	800	30.23	1.190	717.5	1.1122			
	900	31.85	1.254	796.8	1.2351			
	1000	33.32	1.312	872.2	1.3519			
	1250	37.57	1.479	1108	1.7180			
	1500	40.69	1.602	1300	2.0157			
	1750	43.59	1.716	1492	2.3127			
	2000	46.28	1.822	1682	2.6073			
	1							

- For 100 Hp, 460 V, 3-phase motor,
- Circuit = 3-2/0 AWG (67.43 mm²), 1-6 AWG (13.30 mm²) GND
- In one conduit

	Star (ANC	Approximate	Diameter	Approximate	2 Area
Туре	kcmil)	mm	in.	mm^2	in. ²
	Туре	: KF-1, KF-2, KF	F-1, KFF-2, XHH, X	HHW, XHHW-2, ZW	
XHHW, ZW,	14	3.378	0.133	8,968	0.0139
XHHW-2, XHH	12	3.861	0.152	11.68	0.0181
	10	4.470	0.176	15.68	0.0243
	8	5.994	0.236	28.19	0.0437
	6	6.960	0.274	38.06	0.0590
	4	8.179	0.322	52.52	0.0814
	3	8.890	0.350	62.06	0.0962
	2	9.703	0.382	73.94	0.1146
XHHW,	1	11.23	0.442	98.97	0.0590 0.0814 0.0962 0.1146 0.1534 0.1825 0.2190 0.2642
лнн <i>w-2</i> , лнн	1/0	12.24	0.482	117.7	0.1825
	2/0	13.41	0.528	141.3	0.2190
	3/0	14.73	0.58	170.5	0.2642
	4/0	16.21	0.638	206.3	0.3197
	250	17.91	0.705	251.9	0.3904
	300	19.30	0.76	292.6	0.4536
	350	20.60	0.811	333.3	0.5166
	400	21.79	0.858	373.0	0.5782
	500	23.95	0.943	450.6	0.6984

- Per NEC Table:
- Area of 2/0 AWG (67.43 mm²) cable = 141.3 mm²
- Area of 6 AWG (13.30 mm²) cable = 38.06 mm²
- Total cross-sectional area of all cables = 3 x 141.3 mm² + 1 x 38.06 mm² = 462.0 mm²

- Next, select minimum conduit size for 462.0 mm² of total cable cross-sectional area
- Criteria of minimum conduit is governed by NEC Chapter 9, Table 1 = Percent of Cross Section of Conduit and Tubing for Conductors
- Very rarely does a circuit have only 1 or 2 cables (DC circuits)
- Majority of circuits are over 2 cables
- Thus, maximum cross section of cables to conduit is 40%, also known as "Fill Factor"

NEC Chapter 9, Table 1, Maximum Fill Factor

Chapter 9

Table 1 Percent of Cross Section of Conduit and Tubing for Conductors

Number of Conductors	All Conductor Types
1	53
2	31
Over 2	40

- Why does the NEC limit the fill factor to 40%?
- Two major factors:
- 1) Cable Damage During Installation If the conduit has too many cables in the conduit, then the pulling tension increases and the cable could be damaged with broken insulation
- 2) Thermal Heat Management Heat emanates from cables when current flows through them (I²xR), and elevated temperatures increases resistance and reduces ampacity of conductor

- Similar to cables, different conduit manufacturers produce conduits with slightly different diameters
- If actual conduit data sheet is available, then those conduit diameters can be used
- If not, such as during design, the NEC Table is used
- NEC Chapter 9, Table 4 = Dimensions and Percent Area of Conduit and Tubing, Article 344 – Rigid Metal Conduit (RMC) or Article 352 and 353 – Rigid PVC Conduit (PVC), Schedule 40
- Standard engineering practice = 21 mm diameter minimum conduit size

NEC Chapter 9, Table 4, RMC Conduit Dimensions

Matuia		Nominal Internal Diameter		Total Area 100%		60%		1 Wire 53%		2 Wires 31%		Over 2 Wires 40%	
Designator	Size	mm	in.	mm ²	in. ²	mm ²	in. ²	mm^2	in. ²	mm^2	in. ²	mm^2	in. ²
12	3/8	_	_	_	_	_	_	_	_	_	_	_	_
16	1/2	16.1	0.632	204	0.314	122	0.188	108	0.166	63	0.097	81	0.125
21	3/4	21.2	0.836	353	0.549	212	0.329	187	0.291	109	0.170	141	0.220
27	1	27.0	1.063	573	0.887	344	0.532	303	0.470	177	0.275	229	0.355
35	11⁄4	35.4	1.394	984	1.526	591	0.916	522	0.809	305	0.473	394	0.610
41	11/2	41.2	1.624	1333	2.071	800	1.243	707	1.098	413	0.642	533	0.829
53	2	52.9	2.083	2198	3.408	1319	2.045	1165	1.806	681	1.056	879	1.363
63	21/2	63.2	2.489	3137	4.866	1882	2.919	1663	2.579	972	1.508	1255	1.946
78	3	78.5	3.090	4840	7.499	2904	4.499	2565	3.974	1500	2.325	1936	3.000
91	31/2	90.7	3.570	6461	10.010	3877	6.006	3424	5.305	2003	3.103	2584	4.004
103	4	102.9	4.050	8316	12.882	4990	7.729	4408	6.828	2578	3.994	3326	5.153
129	5	128.9	5.073	13050	20.212	7830	12.127	6916	10.713	4045	6.266	5220	8.085
155	6	154.8	6.093	18821	29.158	11292	17.495	9975	15.454	5834	9.039	7528	11.663

NEC Chapter 9, Table 4, PVC Conduit Dimensions

Matria		Nominal Internal Diameter		Total Area 100%		60%		1 V 53	1 Wire 53%		2 Wires 31%		Over 2 Wires 40%	
Designator	Size	mm	in.	mm^2	in. ²	mm^2	in. ²	mm^2	in. ²	mm^2	in. ²	mm^2	in. ²	
12	3⁄8	_	_	_	_	_	_	_	_	_	_	_	_	
16	1/2	15.3	0.602	184	0.285	110	0.171	97	0.151	57	0.088	74	0.114	
21	3⁄4	20.4	0.804	327	0.508	196	0.305	173	0.269	101	0.157	131	0.203	
27	1	26.1	1.029	535	0.832	321	0.499	284	0.441	166	0.258	214	0.333	
35	11/4	34.5	1.360	935	1.453	561	0.872	495	0.770	290	0.450	374	0.581	
41	11/2	40.4	1.590	1282	1.986	769	1.191	679	1.052	397	0.616	513	0.794	
53	2	52.0	2.047	2124	3.291	1274	1.975	1126	1.744	658	1.020	849	1.316	
63	21/2	62.1	2.445	3029	4.695	1817	2.817	1605	2.488	939	1.455	1212	1.878	
78	3	77.3	3.042	4693	7.268	2816	4.361	2487	3.852	1455	2.253	1877	2.907	
91	31/2	89.4	3.521	6277	9.737	3766	5.842	3327	5.161	1946	3.018	2511	3.895	
103	4	101.5	3.998	8091	12.554	4855	7.532	4288	6.654	2508	3.892	3237	5.022	
129	5	127.4	5.016	12748	19.761	7649	11.856	6756	10.473	3952	6.126	5099	7.904	
155	6	153.2	6.031	18433	28.567	11060	17.140	9770	15.141	5714	8.856	7373	11.427	

- RMC is usually used above ground and where mechanical protection is required to protect the cables from damage
- PVC = Poly-Vinyl-Chloride
- PVC is usually used in underground ductbanks
- PVC Schedule 40 is thinner wall than Schedule 80
- Concrete encasement around PVC Schedule 40 provide the mechanical protection, particularly when trenching or digging is being performed later

- For the 100 Hp, 460 V, 3-phase motor,
- Total cable area = 462.0 mm²
- For RMC, a conduit diameter of 41 mm has an area of 1333 mm²
- Fill Factor = Total Cable Area/Conduit Area
- Fill Factor = 462 mm²/1333 mm² = 34.7%
- FF < 40%, and is compliant with the NEC
- A larger conduit could be used: 53 mm = 2198 mm²
- Fill Factor = 462 mm²/2198 mm² = 21.0% >>> OK

- For PVC, a conduit diameter of 41 mm has an area of 1282 mm²
- Note the area of 1282 mm² for PVC is slightly less than the area of 1333 mm² for RMC
- Fill Factor = 462 mm²/1282 mm² = 36.0%
- FF < 40%, and is compliant with the NEC
- A larger conduit could be used: 53 mm = 2124 mm²
- Fill Factor = 462 mm²/2124 mm² = 21.7% >>> Still OK

- For short circuit lengths, voltage drop considerations will not apply
- But for longer lengths, the increased resistance in cables will affect voltage drop
- If so, the conductors should be increased in size to minimize voltage drop
- Consider previous example with the 100 Hp, 460 V, 3phase motor circuit
- Consider two circuit lengths: 25 meters, or 500 meters for illustration

- Very basic formula for Vdrop = (1.732 or 2) x I x L x Z/L
- There are more exact formulas to use, but the goal is to calculate the approximate Vdrop to then determine if or how to compensate
- For 3-phase circuits: use 1.732, Sq Rt (3)
- For 1-phase circuits: use 2, for round trip length
- Where, I = load current (124 A for 100 Hp pump)
- Where, L = circuit length (25 m or 500 m)
- Where Z/L = impedance per unit length

- For Z/L data, use NEC Chapter 9, Table 9 = Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, 60 Hz, 75°C (167°F) – Three Single Conductors in Conduit
- For most applications, assume a power factor of 0.85
- Then, the column heading of "Effective Z at 0.85 PF for Uncoated Copper Wires" can be easily used
- Sub-columns include options for PVC conduit, Aluminum conduit, and Steel conduit

NEC Chapter 9, Table 9, Z for Conductors

Table 9 Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, 60 Hz, 75°C (167°F) — Three Single Conductors in Conduit

								Ohms to Ohms to) Neutral) Neutral	per Kilor per 1000	meter) Feet				
	X _L (Rea for All	ctance) Wires	Alteri Re Co	Alternating-Current Resistance for Uncoated Copper Wires			Alternating-Current Resistance for Aluminum Wires			ive Z at (ncoated (Wires	0.85 <i>PF</i> Copper	Effecti for	ive Z at 0 7 Alumin Wires	.85 PF um	
Size (AWG or kemil)	PVC, Alumi- num Conduits	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	Size (AWG or kemil)
14	0.190 0.058	0.240 0.073	10.2 3.1	10.2 3.1	10.2 3.1	_	_	_	8.9 2.7	8.9 2.7	8.9 2.7	_	_	_	14
12	0.177 0.054	0.223 0.068	6.6 20	6.6 20	6.6 20	10.5 3.2	10.5 3.2	10.5 3.2	5.6 1.7	5.6 1.7	5.6 1.7	9.2 2.8	9.2 28	92 2.8	12
10	0.164 0.050	0.207 0.063	3.9 1.2	3.9 1.2	3.9 1.2	6.6 2.0	6.6 2.0	6.6 2.0	3.6 1.1	3.6 1.1	3.6 1.1	5.9 1.8	5.9 1.8	5.9 1.8	10
8	0.171 0.052	0.213 0.065	2.56 0.78	2.56 0.78	2.56 0.78	43 13	43 13	43 13	2.26 0.69	2.26 0.69	2.30 0.70	3.6 1.1	3.6 1.1	3.6 1.1	8
6	0.167 0.051	0.210 0.064	1.61 0.49	1.61 0.49	1.61 0.49	2.66 0.81	2.66 0.81	2.66 0.81	1.44 0.44	1.48 0.45	1.48 0.45	2.33 0.71	2.36 0.72	2.36 0.72	6
4	0.157 0.048	0.197 0.060	1.02 0.31	1.02 0.31	1.02 0.31	1.67 0.51	1.67 0.51	1.67 0.51	0.95 0.29	0.95 0.29	0.98 0.30	1.51 0.46	151 0.46	151 0,46	4
3	0.154 0.047	0.194 0.059	0.82 0.25	0.82 0.25	0.82 0.25	131 0.40	135 0,41	131 0,40	0.75 0.23	0.79 0.24	0.79 0.24	1.21 0.37	121 037	121 037	3
2	0.148 0.045	0.187 0.057	0.62 0.19	0.66 0.20	0.66 0.20	1.05 0.32	1.05 0.32	1.05 0.32	0.62 0.19	0.62 0.19	0.66 0.20	0.98 0.30	0.98 0.30	0.98 0.30	2
1	0.151 0.046	0.187 0.057	0.49 0.15	0.52 0.16	0.52 0.16	0.82 0.25	0.85 0.26	0.82 0.25	0.52 0.16	0.52 0.16	0.52 0.16	0.79 0.24	0.79 0.24	0.82 0.25	1
i/o	0.144 0.044	0.180 0.055	0.39 0.12	0.43 0.13	0.39 0.12	0.66 0.20	0.69 0.21	0.66 0.20	0.43 0.13	0.43 0.13	0.43 0.13	0.62 0.19	0.66 0.20	0.66 0.20	1/0
20	0.141 0.043	0.177 0.054	0.33 0.10	0.33 0.10	0.33 0.10	0.52 0.16	0.52 0.16	0.52 0.16	0.36 0.11	0.36 0.11	0.36 0.11	0.52 0.16	0.52 0.16	0.52 0.16	2/0
310	0.138 0.042	0.171 0.052	0.253 0.077	0.269 0.082	0.259 0.079	0.43 0.13	0.43 0.13	0.43 0.13	0.289 0.088	0.302 0.092	0.308 0.094	0.43 0.13	0.43 0.13	0.46 0.14	3/0
4/0	0.135 0.041	0.167 0.051	0.203 0.062	0.220 0.067	0.207 0.063	0.33 0.10	0.36 0.11	0.33 0.10	0.243 0.074	0.256 0.078	0.262 0.080	0.36 0.11	0.36 0.11	0.36 0.11	4/0
250	0.135 0.041	0.171 0.052	0.171 0.052	0.187 0.057	0.177 0.054	0.279 0.085	0.295	0.282 0.086	0.217 0.066	0.230 0.070	0.240 0.073	0.308 0.094	0.322 0.098	0.33 0.10	250
300	0.135 0.041	0.167 0.051	0.144 0.044	0.161 0.049	0.148 0.045	0.233 0.071	0.249 0.076	0.236 0.072	0.194 0.059	0.207 0.063	0.213 0.065	0.269 0.082	0.282 0.066	0.289 0.068	300
350	0.131 0.040	0.164 0.050	0.125 0.038	0.141 0.043	0.128 0.039	0.200 0.061	0.217 0.066	0.207 0.063	0.174 0.053	0.190 0.058	0.197 0.060	0.240 0.073	0.253 0.077	0.262 0.060	350
400	0.131 0.040	0.161 0.049	0.108 0.033	0.125 0.038	0.115 0.035	0.177 0.054	0.194 0.059	0.180 0.055	0.161 0.049	0.174 0.053	0.184 0.056	0.217 0.066	0.233 0.071	0.240 0.073	400

÷.

	X_L (Reactance) for All Wires		Alternating-Current Resistance for Uncoated Copper Wires			Alternating-Current Resistance for Aluminum Wires			Effective Z at 0.85 <i>PF</i> for Uncoated Copper Wires			Effective Z at 0.85 <i>PF</i> for Aluminum Wires			
Size (AWG or kcmil)	PVC, Alumi- num Conduits	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	PVC Conduit	Alumi- num Conduit	Steel Conduit	Size (AWG or kemil)
14	0.190 0.058	0.240 0.073	10.2 3.1	10.2 3.1	$\frac{10.2}{3.1}$	=	_	=	8.9 2.7	8.9 2.7	8.9 2.7	_	_	_	14
12	0.177 0.054	0.223 0.068	6.6 20	6.6 2.0	6.6 20	10.5 3.2	105 32	10.5 3.2	5.6 1.7	5.6 1.7	5.6 1.7	9.2 2.8	9.2 2.8	92 2.8	12
10	0.164 0.050	0.207 0.063	3.9 1.2	3.9 1.2	3.9 1.2	6.6 2.0	6.6 2.0	6.6 2.0	3.6 1.1	3.6 1.1	3.6 1.1	5.9 1.8	5.9 1.8	59 18	10
8	0.171 0.052	0.213 0.065	2.56 0.78	2.56 0.78	2.56 0.78	43 13	43 13	43 13	2.26 0.69	2.26 0.69	2.30 0.70	3.6 1.1	3.6 1.1	3.6 1.1	8
6	0.167 0.051	0.2.10 0.064	1.61 0.49	1.61 0.49	1.61 0.49	2.66 0.81	2.66 0.81	2.66 0.81	1.44 0.44	1.48 0.45	1.48 0.45	2.33 0.71	2.36 0.72	236 0.72	6
4	0.157 0.048	0.197 0.060	1.02 0.31	1.02 0.31	1.02 0.31	1.67 0.51	1.67 0.51	1.67 0.51	0.95 0.29	0.95 0.29	0.98 0.30	1.51 0.46	1.51 0.46	151 0.46	4
3	0.154 0.047	0.194 0.059	0.82 0.25	0.82 0.25	0.82 0.25	1.31 0.40	135 041	1.31 0.40	0.75 0.23	0.79 0.24	0.79 0.24	1.21 0.37	121 037	121 037	3
2	0.148 0.045	0.187 0.057	0.62 0.19	0.66 0.20	0.66 0.20	1.05 0.32	1.05 0.32	1.05 0.32	0.62 0.19	0.62 0.19	0.66 0.20	0.98 0.30	0.98 0.30	0.98 0.30	2
1	0.151 0.046	0.187 0.057	0.49 0.15	0.52 0.16	0.52 0.16	0.82 0.25	0.85 0.26	0.82 0.25	0.52 0.16	0.52 0.16	0.52 0.16	0.79 0.24	0.79 0.24	0.82 0.25	1
1/0	0.144 0.044	0.180 0.055	0.39 0.12	0.43 0.13	0.39 0.12	0.66 0.20	0.69 0.21	0.66 0.20	0.43 0.13	0.43 0.13	0.43 0.13	0.62 0.19	0.66 0.20	0.66 0.20	1/0
2/0	0.141 0.043	0.177 0.054	0.33 0.10	0.33 0.10	0.33 0.10	0.52 0.16	0.52 0.16	0.52 0.16	0.36 0.11	0.36 0.11	0.36 0.11	0.52 0.16	0.52 0.16	0.52 0.16	2/0

- For steel conduit, Z/L = 0.36 ohms/kilometer
- For PVC conduit, Z/L = 0.36 ohms/kilometer
- Happens to be same Z/L
- Other table entries are different between steel and PVC for exact same size of conductor
- The difference is due primarily to inductance from interaction with the steel conduit

- For 100 Hp, 460 V, 3-phase motor, with L = 25 m:
- Vdrop = 1.732 x I x L x Z/L
- Vdrop = 1.732 x 124 A x .025 km x 0.36 ohms/km

= 1.94 V

- Vdrop (%) = Vdrop/System Voltage
- Vdrop (%) = 1.94 V/480 V = 0.4%
- What is criteria for excessive Vdrop?

- The NEC does not dictate Vdrop limitations
- A lower than normal voltage at device is not a safety consideration; only operational functionality of device
- However, NEC has a Fine Print Note (FPN) that recommends a maximum Vdrop of 5%
- An FPN is optional, and not binding per the NEC
- Thus, Vdrop of 0.4% is acceptable
- NEC 210.19(A)(1) = Conductors-Minimum Ampacity and Size, General, FPN No. 4
NEC 210.19(A)(1), FPN No. 4, Voltage Drop, 3%

FPN No. 1: See 310.15 for ampacity ratings of conductors.

FPN No. 2: See Part II of Article 430 for minimum rating of motor branch-circuit conductors.

FPN No. 3: See 310.10 for temperature limitation of conductors.

FPN No. 4: Conductors for branch circuits as defined in Article 100, sized to prevent a voltage drop exceeding 3 percent at the farthest outlet of power, heating, and lighting loads, or combinations of such loads, and where the maximum total voltage drop on both feeders and branch circuits to the farthest outlet does not exceed 5 percent, provide reasonable efficiency of operation. See FPN No. 2 of 215.2(A)(3) for voltage drop on feeder conductors.

- For 100 Hp, 460 V, 3-phase motor, with L = 500 m:
- Vdrop = 1.732 x I x L x Z/L
- Vdrop = 1.732 x 124 A x .5 km x 0.36 ohms/km

= 38.66 V

- Vdrop (%) = Vdrop/System Voltage
- Vdrop (%) = 38.66 V/480 V = 8.1%
- This Vdrop far exceeds the 5% limit
- How do we compensate for excessive Vdrop?

- To compensate for excessive Vdrop, most common method is to increase size of conductors
- Must increase size of previous 2/0 AWG (67.43 mm²) conductors, or lower impedance of conductors
- Per NEC Chapter 9, Table 9, for 300 kcmil (152 mm²):
- For steel conduit, Z/L = 0.213 ohms/kilometer
- For PVC conduit, Z/L = 0.194 ohms/kilometer
- Recalculate Vdrop with 300 kcmil (152 mm²) conductors

- For 100 Hp, 460 V, 3-phase motor, with L = 500 m, and with steel conduit:
- Vdrop = 1.732 x 124 A x .5 km x 0.213 ohms/km

= 22.87 V

- Vdrop (%) = Vdrop/System Voltage
- Vdrop (%) = 22.87 V/480 V = 4.7%
- This Vdrop is now below the 5% limit

- For 100 Hp, 460 V, 3-phase motor, with L = 500 m, and with PVC conduit:
- Vdrop = 1.732 x 124 A x .5 km x 0.194 ohms/km

= 20.83. V

- Vdrop (%) = Vdrop/System Voltage
- Vdrop (%) = 20.83 V/480 V = 4.3%
- This Vdrop is also below the 5% limit

- With increased conductors from 2/0 AWG (67.43 mm²) to 300 kcmil (152 mm²), the conduit may now be too small, resulting in a FF exceeding 40%
- Per NEC Chapter 9, Table 5:
- Area of 300 kcmil (152 mm²) cable = 292.6 mm²

 What about the previous grounding conductor of 6 AWG (13.30 mm²) cable?

- NEC requires that when increasing size of conductors to compensate for voltage drop, the grounding conductor must be increased in size by the same proportion
- NEC 250.122(B) = Size of Equipment Grounding Conductors, Increased in Size

NEC 250.122(B), Increase Ground for Vdrop

250.122 Size of Equipment Grounding Conductors.

(A) General. Copper, aluminum, or copper-clad aluminum equipment grounding conductors of the wire type shall not be smaller than shown in Table 250.122, but in no case shall they be required to be larger than the circuit conductors supplying the equipment. Where a cable tray, a raceway, or a cable armor or sheath is used as the equipment grounding conductor, as provided in 250.118 and 250.134(A), it shall comply with 250.4(A)(5) or (B)(4).

(B) Increased in Size. Where ungrounded conductors are increased in size, equipment grounding conductors, where installed, shall be increased in size proportionately according to the circular mil area of the ungrounded conductors.

(C) Multiple Circuits. Where a single equipment grounding conductor is run with multiple circuits in the same raceway, cable, or cable tray, it shall be sized for the largest overcurrent device protecting conductors in the raceway, cable, or cable tray. Equipment grounding conductors installed in cable trays shall meet the minimum requirements of 392.3(B)(1)(c).

- Must calculate % increase in cross-sectional area of phase conductors
- Then use that same % increase for the grounding conductor
- Increase from 2/0 AWG (67.43 mm²) to 300 kcmil (152 mm²) = 152 mm²/ 67.43 mm² = 225%
- Increase of grounding conductor of 6 AWG (13.30 mm²) by 225% = 13.30 mm² x 225% = 30.0 mm²
- Use NEC Chapter 9, Table 8, to select a conductor close to 30.0 mm²

BUILDING A WORLD OF DIFFERENCE®

NEC Chapter 9, Table 8, Conductor Properties

Size	Агеа				
(AWG or kemil)	mm ²	ircular mils			
18 18	0.823 0.823	1620 1620			
16 16	$\substack{1.31\\1.31}$	2580 2580			
14 14	2.08 2.08	4110 4110			
12 12	$3.31 \\ 3.31$	6530 6530			
10 10	5.261 5.261	10380 10380			
8 8	8.367 8.367	16510 16510			
6	13.30 21.15	26240 41740			
2	26.67 33.62 42.41	52620 66360 83690			

Size	A	ren
(AWG or kemil)	(mm²	ircular mils
1/0 2/0 3/0 4/0	53.49 67.43 85.01 107.2	105600 133100 167800 211600
250 300 350	127 152 177	
400 500 600	203 253 304	
700 750 800	355 380 405	
900 1000 1250	456 507 633	_
1500 1750 2000	760 887 1013	_

- NEC Chapter 9, Table 8 shows that 2 AWG (33.62 mm²) is close to and exceeds the calculated value of 30.0 mm²
- In some cases, the increase in phase conductor may result in a very large %, especially when starting with small conductors
- May be possible that applying that % increase results in a grounding conductor larger than the phase conductors
- That doesn't sound very reasonable

NEC 250.122(A), Limit Increase Ground for Vdrop

250.122 Size of Equipment Grounding Conductors.

(A) General. Copper, aluminum, or copper-clad aluminum equipment grounding conductors of the wire type shall not be smaller than shown in Table 250.122, but in no case shall they be required to be larger than the circuit conductors supplying the equipment. Where a cable tray, a raceway, or a cable armor or sheath is used as the equipment grounding conductor, as provided in 250.118 and 250.134(A), it shall comply with 250.4(A)(5) or (B)(4).

(B) Increased in Size. Where ungrounded conductors are increased in size, equipment grounding conductors, where installed, shall be increased in size proportionately according to the circular mil area of the ungrounded conductors.

(C) Multiple Circuits. Where a single equipment grounding conductor is run with multiple circuits in the same raceway, cable, or cable tray, it shall be sized for the largest overcurrent device protecting conductors in the raceway, cable, or cable tray. Equipment grounding conductors installed in cable trays shall meet the minimum requirements of 392.3(B)(1)(c).

- Thus, final circuit adjusted for voltage drop =
- 3-300 kcmil (152 mm²), 1-2 AWG (33.62 mm²) GND
- Now, very unlikely the previous conduit size of 41 mm in diameter, or even the next size of 53 mm will be adequate to keep FF less than 40%
- Need to re-calculate the total cable area

	Sine (AWC	Approximate	Diameter	Approximate	Area
Туре	kcmil)	mm	in.	mm^2	in. ²
	Туре	: KF-1, KF-2, KF	F-1, КFF-2, ХНН, Х	HHW, XHHW-2, ZW	
XHHW, ZW.	14	3.378	0.133	8,968	0.0139
XHHW-2, XHH	12	3.861	0.152	11.68	0.0181
,	10	4.470	0.176	15.68	0.0243
	8	5.994	0.236	28.19	0.0437
	6	6,960	0.274	38.06	0.0590
	4	8.179	0.322	52.52	0.0814
	3	8.890	0.350	62.06	0.0962
	2	9.703	0.382	73.94	0.1146
XHHW,	1	11.23	0.442	98.97	0.1534
лнн w-2, лнн	1/0	12.24	0.482	117.7	0.1825
	2/0	13.41	0.528	141.3	0.2190
	3/0	14.73	0.58	170.5	0.2642
	4/0	16.21	0.638	206.3	0.3197
	250	17.91	0.705	251.9	0.3904
	300	19.30	0.76	292.6	0.4536
	350	20.60	0.811	333.3	0.5166
	400	21.79	0.858	373.0	0.5782
	500	23.95	0.943	450.6	0.6984

- Per NEC Chapter 9, Table 5:
- Area of 300 kcmil (152 mm²) cable = 292.6 mm²
- Area of 2 AWG (33.62 mm²) cable = 73.94 mm²
- Total cross-sectional area of all cables = 3 x 292.6 mm² + 1 x 73.94 mm² = 951.7 mm²
- Need to re-calculate minimum conduit diameter

NEC Chapter 9, Table 4, RMC Conduit Dimensions

					Artic	le 344 —	Rigid N	letal Cond	luit (RM	
Metric Designator		77	Non Inte Diar	ninal ernal neter	Total 10	Area 0%	60	%	1 W 53	/ire %
	Trade Size	mm	in.	mm ²	in. ²	mm ²	in. ²	mm ²	in. ²	
12	3⁄8						_			
16	1/2	16.1	0.632	204	0.314	122	0.188	108	0.166	
21	3/4	21.2	0.836	353	0.549	212	0.329	187	0.291	
27	1	27.0	1.063	573	0.887	344	0.532	303	0.470	
35	11/4	35.4	1.394	984	1.526	591	0.916	522	0.809	
41	11/2	41.2	1.624	1333	2.071	800	1.243	707	1.098	
53	2	52.9	2.083	2198	3.408	1319	2.045	1165	1.806	
63	21/2	63.2	2.489	3137	4.866	1882	2.919	1663	2.579	
78	3	78.5	3.090	4840	7.499	2904	4.499	2565	3.974	
91	31/2	90.7	3.570	6461	10.010	3877	6.006	3424	5.305	
103	4	102.9	4.050	8316	12.882	4990	7.729	4408	6.828	
129	5	128.9	5.073	13050	20.212	7830	12.127	6916	10.713	
155	6	154.8	6.093	18821	29.158	11292	17.495	9975	15.454	

- Per NEC Chapter 9, Table 4:
- For RMC, a conduit diameter of 53 mm has an area of 2198 mm²
- Fill Factor = 951.7 mm²/2198 mm² = 43.3%
- FF > 40%, and is in violation of the NEC
- For RMC, a conduit diameter of 63 mm has an area of 3137 mm²
- Fill Factor = 951.7 mm²/3137 mm² = 30.3% >> OK

NEC Chapter 9, Table 4, PVC Conduit Dimensions

Matric	Tuoda	Non Inte Diar	ninal ernal neter	Total 10	l Area 0%	60	%	1 V 53	Vire %
Designator	Size	mm	in.	mm ²	in. ²	mm ²	in. ²	mm^2	in. ²
12	3⁄8		<u> </u>		_				_
16	1/2	15.3	0.602	184	0.285	110	0.171	97	0.151
21	3⁄4	20.4	0.804	327	0.508	196	0.305	173	0.269
27	1	26.1	1.029	535	0.832	321	0.499	284	0.441
35	11/4	34.5	1.360	935	1.453	561	0.872	495	0.770
41	11/2	40.4	1.590	1282	1.986	769	1.191	679	1.052
53	2	52.0	2.047	2124	3.291	1274	1.975	1126	1.744
63	21/2	62.1	2.445	3029	4.695	1817	2.817	1605	2.488
78	3	77.3	3.042	4693	7.268	2816	4.361	2487	3.852
91	31/2	89.4	3.521	6277	9.737	3766	5.842	3327	5.161
103	4	101.5	3.998	8091	12.554	4855	7.532	4288	6.654
129	5	127.4	5.016	12748	19.761	7649	11.856	6756	10.473
155	6	153.2	6.031	18433	28.567	11060	17.140	9770	15.141

- Per NEC Chapter 9, Table 4:
- For PVC, a conduit diameter of 53 mm has an area of 2124 mm²
- Fill Factor = 951.7 mm²/2124 mm² = 44.8%
- FF > 40%, and is in violation of the NEC
- For PVC, a conduit diameter of 63 mm has an area of 3029 mm²
- Fill Factor = 951.7 mm²/3029 mm² = 31.4% >> OK

- Recall,
- Utility supply = 480 V, nominal
- Motors and motor starters rating = 460 V

• Why 20 V difference?

- To give the motor a chance to start under less than nominal conditions
- Utility can't guarantee 480 V at all times
- Heavily load utility circuits reduce utility voltage
- Sometimes have capacitor banks to boost voltage or auto tap changing transformers or voltage regulators
- Unless utility has a history of poor voltage delivery profiles, assume 480 V, or 1.0 per unit (pu)

 Assuming utility is 480 V, you have built-in 20 V margin, or 460 V/480 V = 4.3% of voltage margin

- Generally, motors require 90% voltage minimum to start
- With respect to motor: 460 V x 0.90 = 414 V is minimum voltage at motor terminals to start
- With respect to utility supply: 480 V 414 V = 66 V, or 414 V/480 V = 15.9% of voltage margin

- Prefer to avoid getting near 414 V, otherwise risk motor not starting
- Account for lower utility voltage by design consideration beyond 20 V margin
- Hence, the 5% voltage drop limit is important
- Can't control utility supply voltage, but can control design considerations

- Identical 100 Hp, 460 V, 3-phase motor
- Same cables and conduit, increased in size for Vdrop
- 3-300 kcmil (152 mm²), 1-2 AWG (33.62 mm²) GND
- But run in parallel to first circuit
- Why not combine all 7 cables into one larger conduit?
- Note the grounding conductor can be shared
- Possible, but there are consequences

- The major consequence is coincident heating effects on each individual circuit
- Recall, heating effects of current through a conductor generates heat in the form of losses = I²xR
- The NEC dictates ampacity derating for multiple circuits in one conduit
- NEC Table 310.15(B)(2)(a) = Adjustment Factors for More Than Three Current-Carrying Conductors in a Raceway or Cable

Table 310.15(B)(2)(a)Adjustment Factors for More ThanThree Current-Carrying Conductors in a Raceway or Cable

Number of Current-Carrying Conductors	Percent of Values in Tables 310.16 through 310.19 as Adjusted for Ambient Temperature if Necessary
4–6	80
7–9	70
10-20	50
21-30	45
31-40	40
41 and above	35

- Thus, for 6 cables in one conduit, the derating of 4-6 cables requires an ampacity derating of 80%
- The previous ampacity of 285 A for 300 kcmil (152 mm²) must be derated as follows:
- 4-6 cable derating = 285 A x 0.80 = 228 A
- Previous load current has not changed:
 124 A x 125% = 155 A
- Derated ampacity of 228 A is greater than 155 A
- If there are 7 cables in the conduit, why don't we use the 2nd line for 7-9 cables with a derating of 70%?

- Because the 7th cable is a grounding conductor, and is therefore not a "current-carrying conductor"
- New dual circuit = 3-300 kcmil (152 mm²), 1-2 AWG (33.62 mm²) GND
- Previous conduit size of 63 mm is now probably too small and will result in a FF < 40% per NEC

- Per NEC Chapter 9, Table 5:
- Area of 300 kcmil (152 mm²) cable = 292.6 mm²
- Area of 2 AWG (33.62 mm²) cable = 73.94 mm²
- Total cross-sectional area of all cables = 6 x 292.6 mm² + 1 x 73.94 mm² = 1829.5 mm²
- Need to re-calculate minimum conduit diameter

NEC Chapter 9, Table 4, RMC Conduit Dimensions

Metric Designator	Nom Inte Dian		A Nominal Internal Total Are Diameter 100%		Articl Area 0%	le 344 — 60	Rigid N %	letal Conduit (RM 1 Wire 53%	
	Trade Size	mm	in.	mm ²	in. ²	mm^2	in. ²	mm^2	in. ²
12	3⁄8								
16	1/2	16.1	0.632	204	0.314	122	0.188	108	0.166
21	3/4	21.2	0.836	353	0.549	212	0.329	187	0.291
27	1	27.0	1.063	573	0.887	344	0.532	303	0.470
35	11/4	35.4	1.394	984	1.526	591	0.916	522	0.809
41	11/2	41.2	1.624	1333	2.071	800	1.243	707	1.098
53	2	52.9	2.083	2198	3.408	1319	2.045	1165	1.806
63	21/2	63.2	2.489	3137	4.866	1882	2.919	1663	2.579
78	3	78.5	3.090	4840	7.499	2904	4.499	2565	3.974
91	31/2	90.7	3.570	6461	10.010	3877	6.006	3424	5.305
103	4	102.9	4.050	8316	12.882	4990	7.729	4408	6.828
129	5	128.9	5.073	13050	20.212	7830	12.127	6916	10.713
155	6	154.8	6.093	18821	29.158	11292	17.495	9975	15.454

- Per NEC Chapter 9, Table 4:
- For RMC, the previous conduit diameter of 63 mm has an area of 3137 mm²
- Fill Factor = 1829.5 mm²/3137 mm² = 58.3%
- FF > 40%, and is in violation of the NEC
- For RMC, a conduit diameter of 78 mm has an area of 4840 mm²
- Fill Factor = 1829.5 mm²/4840 mm² = 37.8% >> OK

NEC Chapter 9, Table 4, PVC Conduit Dimensions

Motria	Trada	Non Inte Diar	ninal ernal neter	Tota 10	l Area 0%	60	%	1 V 53	Vire %
Designator	Size	mm	in.	mm ²	in. ²	mm ²	in. ²	mm^2	in. ²
12	3∕8				_				
16	1/2	15.3	0.602	184	0.285	110	0.171	97	0.151
21	3⁄4	20.4	0.804	327	0.508	196	0.305	173	0.269
27	1	26.1	1.029	535	0.832	321	0.499	284	0.441
35	11/4	34.5	1.360	935	1.453	561	0.872	495	0.770
41	11/2	40.4	1.590	1282	1.986	769	1.191	679	1.052
53	2	52.0	2.047	2124	3.291	1274	1.975	1126	1.744
63	21/2	62.1	2.445	3029	4.695	1817	2.817	1605	2.488
78	3	77.3	3.042	4693	7.268	2816	4.361	2487	3.852
91	31/2	89.4	3.521	6277	9.737	3766	5.842	3327	5.161
103	4	101.5	3.998	8091	12.554	4855	7.532	4288	6.654
129	5	127.4	5.016	12748	19.761	7649	11.856	6756	10.473
155	6	153.2	6.031	18433	28.567	11060	17.140	9770	15.141

- Per NEC Chapter 9, Table 4:
- For PVC, the previous conduit diameter of 63 mm has an area of 3029 mm²
- Fill Factor = 1829.5 mm²/3029 mm² = 60.4%
- FF > 40%, and is in violation of the NEC
- For PVC, a conduit diameter of 78 mm has an area of 4693 mm²
- Fill Factor = 1829.5 mm²/4693 mm² = 39.0% >> OK

- Why?
- As temperature of copper increases, the resistance increases
- Common when conduit is located in boiler room or on roof in direct sunlight
- Voltage at load = Voltage at source Voltage drop in circuit between
- Recall, E = I x R, where I is constant for load
- R increases with temperature, thereby increasing Vdrop

- Higher ambient temperature may dictate larger conductor
- NEC Table 310.16 governs derating of conductor ampacity due to elevated temperature
- NEC Table 310.16 = Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Buried), Based on Ambient Temperature of 30°C (86°F)
- This is bottom half of previous ampacity table

NEC Table 310.16, Conductor Temp Derating

	Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2
	Ambient Temp. (°C)	For ambient temp	eratures other than	30°C (86°F), multiply the factor shown be
	21–25	1.08	1.05	1.04
Non	ninal 26-30	1.00	1.00	1.00
	31–35	0.91	0.94	0.96
_	36–40	0.82	0.88	0.91
	41–45	0.71	0.82	0.87
	46-50	0.58	0.75	0.82
	51–55	0.41	0.67	0.76
_	56-60		0.58	0.71
	61–70	—	0.33	0.58
	71-80	—	_	0.41

- For ambient temperature between <u>36°C and 40°C</u>, previous ampacity must be derated to 0.88 of nominal ampacity
- The previous ampacity of 285 A for 300 kcmil (152 mm²) must be derated as follows:
- Temperature derating @ 36-40°C = 285 A x 0.88 = 250.8 A
- Previous load current has not changed:
 124 A x 125% = 155 A
- Derated ampacity of 250.8 A is greater than 155 A

- For ambient temperature between <u>46°C and 50°C</u>, previous ampacity must be derated to 0.75 of nominal ampacity
- The previous ampacity of 285 A for 300 kcmil (152 mm²) must be derated as follows:
- Temperature derating @ 46-50°C = 285 A x 0.75 = 213.8 A
- Previous load current has not changed:
 124 A x 125% = 155 A
- Derated ampacity of 213.8 A is greater than 155 A

- The two derated ampacities of 250.8 A and 213.8 A, were both greater than the target ampacity of 155 A
- We already compensated for Vdrop with larger conductors
- If we had the first Vdrop example with 25 m circuit length, the conductors might have to be increased due to elevated temperature

- Recall, target ampacity = 155 A
- Recall, non-Vdrop conductor was 3-2/0 AWG (67.43 mm²), 1-6 AWG (13.30 mm²) GND
- Recall, ampacity of 2/0 AWG (67.43 mm²) = 175 A
- For derating at <u>36°C to 40°C</u> = 175 A x 0.88 = 154 A
- Close enough to target ampacity of 155 A, OK
- But for second temperature range:
- For derating at <u>46°C to 50°C</u> = 175 A x 0.75 = 131 A
- Ampacity is too low; must go to next size larger

- Underground ductbank has cooler temperatures
- Aboveground can vary but will be worst case
- What if conduit run is through both types?
- NEC allows selecting lower UG ampacity
- But very restrictive
- NEC 310.15(A)(2), Ampacities for Conductors Rated 0-2000 Volts, General, Selection of Ampacity, Exception
- NEC 10 ft or 10%, whichever is less

NEC 310.15(A)(2), Ampacity in Mixed Conduit

No. 4, for branch circuits and 215.2(A), FPN No. 2, for feeders.

FPN No. 2: For the allowable ampacities of Type MTW wire, see Table 13.5.1 in NFPA 79-2007, *Electrical Standard for Industrial Machinery*.

(2) Selection of Ampacity. Where more than one calculated or tabulated ampacity could apply for a given circuit length, the lowest value shall be used.

Exception: Where two different ampacities apply to adjacent portions of a circuit, the higher ampacity shall be permitted to be used beyond the point of transition, a distance equal to 3.0 m (10 ft) or 10 percent of the circuit length figured at the higher ampacity, whichever is less.

FPN: See 110.14(C) for conductor temperature limitations due to termination provisions.

(B) Tables. Ampacities for conductors rated 0 to 2000 volts shall be as specified in the Allowable Ampacity Table

- NEC 310.15(A)(2), Exception, says to use lower ampacity when different ampacities apply
- However, can use higher ampacity if second length of conduit after transition is less than 3 meters (10 ft) or the length of the higher ampacity conduit is 10% of entire circuit, whichever is less

Lower Ampacity, 24 m (80 ft)

- Duplex receptacles are generally convenience receptacles for most any 120 V, 1-phase load
- Single loads like a copy machine or refrigerator can be plugged into a receptacle
- Estimate refrigerator load demand = 1000 VA
- IFL = VA/V = 1000 VA/120 V = 8.33 A
- IFL x 125% = 8.33 A x 1.25 = 10.4 A
- Use NEC Table 310.16 to select conductor size greater than 10.4 A

NEC Table 310.16, Conductor Ampacity

	Temperature Rating of Conductor						
	60°C (140°F)	75°C (167°F)	90°C (194°F)				
Size AWG or kcmil	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2				
	COPPER						
18 16 14* 12* 10* 8	20 25 30 40	20 25 35 50	14 18 25 30 40 55				
6 4 3 2 1	55 70 85 95 110	65 85 100 115 130	75 95 110 130 150				

- Per NEC Table 310.16,
- 14 AWG (2.08 mm²) has an ampacity of 20 A
- 12 AWG (3.31 mm²) has an ampacity of 25 A
- Both would work
- But standard engineering practice is to use 12 AWG (3.31 mm²) minimum for all power-related circuits
- Why?
- To neglect ambient temperature by being conservative for simplicity with built-in 25% margin

- Select circuit breaker based on IFL x 125% = 10.4 A
- Breaker must always be equal to or greater than load current to protect the conductor
- At 120 V, smallest panelboard breaker is 15 A
- Next available larger size is 20 A
- For small molded case breakers, must derate maximum allowable amperes to 80% of breaker rating
- Breaker derating: 15 A x 0.80 = 12 A max allowable
- Breaker derating: 20 A x 0.80 = 16 A max allowable

- Why?
- Biggest reason is that a continuous load tends to build up heat in the breaker, caused by I²R
- The overload element in a small molded case breaker is a bimetallic strip of dissimilar metals that separate when the current flowing thru them exceeds its rating
- The elevated temperature over time can change the resistance of the metals and move closer to the actual trip point
- At 15 A or 20 A, the manufacturing tolerances on the trip point is not accurate

- Need to be conservative and prevent nuisance tripping
- Select 20 A breaker
- Standard engineering practice is to use 20 A breakers regardless of the load demand
- That includes a load that requires only 1 A
- Why?

- Overcurrent protection indeed may be 5 A extra in selecting a 20 A breaker
- This really only affects overload conditions when the demand current exceeds 15 A or 20 A
- Under short circuit conditions, say 2000 A of fault current, both breakers will virtually trip at the same time
- Refrigerator is very unlikely to draw say, 12 A, because its max demand is 8.33 A

- If the compressor motor were to lock up and freeze, that would not really be a short circuit
- But the current flow to the compressor motor would be about 5.5 times the IFL (or the same when the motor starts on in-rush)
- Motor locked rotor current is then 5.5 x 8.33 A = 45.8
 A
- This exceeds both 15 A or 20 A, with or without the 80% derating

- If all breakers in a panelboard were 20 A, then it would be easy to swap out if breaker fails
- Or use a 20 A spare breaker instead of worrying about a 15 A breaker being too small in the future
- Cost differential is trivial between 15 A and 20 A breakers

 Use NEC Table 250.122 to select grounding conductor

NEC Table 250.122, Grounding Conductors

Table 250.122 Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment

Rating or Setting of Automatic Overcurrent Device in Circuit Abord	Size (AWG or kcmil)				
of Equipment, Conduit, etc., Not Exceeding (Amperes)	Copper	Aluminum or Copper-Clad Aluminum*			
15	14	12			
20	12	10			
30	10	8			
40	10	8			
60	10	ð			
100	8	6			

- Grounding conductor is 12 AWG (3.31 mm²) based on breaker rating of 20 A
- Circuit = 2-12 AWG (3.31 mm²), 1-12 AWG (3.31 mm²)
 GND
- Recall, for small lighting and receptacle circuits, use THHN/THWN, 90°C dry, 75°C wet
- This time we use NEC Chapter 9, Table 5, for Type THHN/THWN cable

Table 5 Continued

	Size (AWC on	Approximat			
Туре	kcmil)	mm	in.	mm ²	
THHN, THWN,	14	2.819	0.111	6.258	
THWN-2	12	3.302	0.130	8.581	
	10	4.166	0.164	13.61	
	8	5.486	0.216	23.61	
	6	6.452	0.254	32.71	
	4	8.230	0.324	53.16	
	3	8.941	0.352	62.77	
	2	9.754	0.384	74.71	
	1	11.33	0.446	100.8	
	1/0	12.34	0.486	119.7	
	2/0	13.51	0.532	143.4	
	3/0	14.83	0.584	172.8	
	4/0	16.31	0.642	208.8	
	250	18.06	0.711	256.1	
	300	19.46	0.766	297.3	

- Per NEC Table:
- Area of 12 AWG (3.31 mm²) cable = 8.581 mm²
- Total cross-sectional area of all cables = 2 x 8.581 mm² + 1 x 8.581 mm² = 25.7 mm²
- Use NEC Chapter 9, Table 4 to select conduit size

NEC Chapter 9, Table 4, RMC Conduit Dimensions

		Article 344 — Rigid Metal Condui								
Matula	Trade Size	Nominal Internal Diameter		Total Area 100%		60%		1 W 53	1 Wire 53%	
Metric Designator		mm	in.	mm ²	in. ²	mm ²	in. ²	mm ²	in. ²	
12	3/8							_		
16	1⁄2	16.1	0.632	204	0.314	122	0.188	108	0.166	
21	3⁄4	21.2	0.836	353	0.549	212	0.329	187	0.291	
27	1	27.0	1.063	573	0.887	344	0.532	303	0.470	
35	11⁄4	35.4	1.394	984	1.526	591	0.916	522	0.809	
41	11/2	41.2	1.624	1333	2.071	800	1.243	707	1.098	
53	2	52.9	2.083	2198	3.408	1319	2.045	1165	1.806	
63	21/2	63.2	2.489	3137	4.866	1882	2.919	1663	2.579	
78	3	78.5	3.090	4840	7.499	2904	4.499	2565	3.974	
91	31/2	90.7	3.570	6461	10.010	3877	6.006	3424	5.305	
103	4	102.9	4.050	8316	12.882	4990	7.729	4408	6.828	
129	5	128.9	5.073	13050	20.212	78301	12.127	6916	10.713	
155	6	154.8	6.093	18821	29.158	11292 1	17.495	9975	15.454	

- Per NEC Chapter 9, Table 4:
- For RMC, a conduit diameter of 16 mm has an area of 204 mm²
- Fill Factor = 25.7 mm²/204 mm² = 12.6%
- FF < 40%, OK
- For RMC, a conduit diameter of 21 mm has an area of 353 mm²
- Fill Factor = 25.7 mm²/353 mm² = 7.3%, OK

NEC Chapter 9, Table 4, PVC Conduit Dimensions

Madada		Nominal Internal Diameter		Total Area 100%		60%		1 Wire 53%	
Designator	Size	mm	in.	mm ²	in. ²	mm^2	in. ²	mm^2	in. ²
12	3∕8			1	_				
16	1/2	15.3	0.602	184	0.285	110	0.171	97	0.151
21	3⁄4	20.4	0.804	327	0.508	196	0.305	173	0.269
27	1	26.1	1.029	535	0.832	321	0.499	284	0.441
35	11/4	34.5	1.360	935	1.453	561	0.872	495	0.770
41	11/2	40.4	1.590	1282	1.986	769	1.191	679	1.052
53	2	52.0	2.047	2124	3.291	1274	1.975	1126	1.744
63	21/2	62.1	2.445	3029	4.695	1817	2.817	1605	2.488
78	3	77.3	3.042	4693	7.268	2816	4.361	2487	3.852
91	31/2	89.4	3.521	6277	9.737	3766	5.842	3327	5.161
103	4	101.5	3.998	8091	12.554	4855	7.532	4288	6.654
129	5	127.4	5.016	12748	19.761	7649	11.856	6756	10.473
155	6	153.2	6.031	18433	28.567	11060	17.140	9770	15.141

- Per NEC Chapter 9, Table 4:
- For PVC, a conduit diameter of 16 mm has an area of 184 mm²
- Fill Factor = 25.7 mm²/184 mm² = 14.0%
- FF < 40%, OK
- For PVC, a conduit diameter of 21 mm has an area of 327 mm²
- Fill Factor = 25.7 mm²/327 mm² = 7.9%, OK

- Both conduit diameters of 16 mm and 21 mm, for both RMC and PVC would work
- Standard engineering practice is to use 21 mm conduits for all circuits

- Why?
- Allows future addition of cables
- Cost differential is trivial between 16 mm and 21 mm conduits

- Also prevents poor workmanship by installer when bending conduit
- Need a conduit bender that produces nice even angled sweep around 90 degrees
- Small diameter conduit can easily be bent too sharply and pinch the conduit, thereby reducing the available cross-sectional area of the conduit

Panelboard Design

- The 20 A breakers for the duplex receptacles would be contained in a panelboard
- There are 3-phase panelboards: 208Y/120 V fed from 3-phase transformers
- Where, 208 V is the phase-to-phase voltage, or 120 V x 1.732 = 208 V

Panelboard Design

Panelboard Design

- There are 1-phase panelboards: 120/240 V fed from 1phase transformers
- Where, 240 V is the phase-to-phase voltage with a center-tapped neutral
- Phase A to neutral is 120 V
- Phase B to neutral is 120 V
- Phase A to Phase B is 240 V
- Selection of panelboard depends on type of loads to be powered
- If all loads are 120 V, then either panelboard would suffice
- If some loads are 240 V, 1-phase, like a small air conditioner, then you need the 120/240 V, 1-phase panelboard
- If some loads are 208 V, 3-phase, like a fan or pump, then you need the 208Y/120 V, 3-phase panelboard
- Given a choice on load voltage requirements, the 208Y/120 V, 3-phase panelboard allows more flexibility with a smaller continuous bus rating in amperes

			DANEL BOARD' EVIST DOVAER DANEL A							MAINS: 3D 100 A MAIN BREAKER		DHACE	
9 49					RATING 400 A			<u> </u>	I OCATION: BITTERS DUMD STATION	914	FINAGE III OF	11 20	
			MOUNTING: SUBFACE	KAUC 40		2,100 A			<u> </u>				VA VA
VA	VA						<u>і </u>	BKR			VA	VA	VA
840				12	20		1 2	20	2	HSD #2 MOTOR OPERATED VALVE	840		
	940			1-	20		4	20	<u> </u>	TISP #2 MOTOR OPERATED VALVE	040	940	
	040	840	$+^{-}$ 1 of 3	+-	-	5	4	-	-	-		040	840
		040	SDARE	1	20	+ 7		20	3	HSD #3 MOTOR OPERATED VALVE	840		040
				20		10	20	<u> </u>		040	840		
	400	480	SOLITH RESERVOIR LIGHTS		20	11	12		-			040	840
240		400	CONTROL VALVE 8" & 12"		20	13	14	20	1		480		040
240	120			1	20	15	16	20	1	AREA LIGHTS	400	480	
	120	480		1	20	17	18	20	1	HSP #1 PANEL LIGHTS RECEPTACLES		400	240
480		400	CATHODIC PROTECTION PANEL		20	19	20	20	3	SPARE	0		240
400	480		SAIGR LIGHTS RECEPTACLES		20	21	20	20	۲, I	-		0	
		480	HSP #10 TEST POWER	11	20	23	24	<u> </u>	<u> </u>	-			0
840		100	HSP #10 MOTOR OPERATED VALVE	3	20	25	26	20	1	HSP #6 POWER	480		
	840		-	1.	-	27	28	20	1	HSP #6 PANAMETRICS		120	
		840	-	- 1	-	29	30	20	1	HSP #6 AREA RECEPTACLES			360
840			HSP #6 MOTOR OPERATED VALVE	3	20	31	32	20	1	HSP #6 AREA RECEPTACLES	360		
	840			-	-	33	34	20	1	SPARE		0	
		840	-	-		35	36	20	1	SPARE			0
480			HSP #6 HEATER	1	20	37	- 38	20	1	SWGR SPACE HEATERS	480		
	360		TANK A, LIGHTS, RECEPTACLES	1	20	39	40	20	1	HSP #3 TEST POWER		480	
(480		1	20	41	42	20	1	COMPRESSOR			600
3720	TOTAL "L1" 2 OF 3					72	200			TOTAL "L1"	3480		
	3960		TOTAL "L2"		6729				TOTAL "L2"		2760		
	4440 TOTAL "L3"				73	20			TOTAL "L3"			2880	
	TOTAL LOAD (VA) = PHASES = VOLTAGE (V) = TOTAL CURRENT (A) = DERATING =			'A) =	A) = 21 ES =		240						
				ES =			3						
				(V) =		2	08						
				(A) =	= 59. = 1.2		9.0						
				NG =			25						
	MINIMUM BUS RATING (#			(A) =	x) = 73.7		3.7						
			SELECTED BUS RATING	(A) =		1	00						
		-	-	-	-			of	3				-

- View 1 of 3:
- Each load is entered in the spreadsheet
- Each load's demand VA is entered into the spreadsheet
- Each load's breaker is entered with trip rating and 1, 2, or 3 poles (120 V or 208 V)

PHASE				PANELBOARD: EXIST POWER PANEL A	BUS: COPPER				
	"L1" "L2" "L3"		"L3"	SERVICE: 208Y/120 V, 3PH, 4W, S/N		RATING:100 A			
VA VA VA N			VA	MOUNTING: SURFACE	KAIC: 10,000 A				
				LOAD	Ρ	BKR	CK	T	
	840			HSP #1 MOTOR OPERATED VALVE	3	20	1		
		840		-	-	-	3		
			840	-	-	-	5		
	0			SPARE	1	20	7		
		480		BUS A TEST POWER	1	20	9		
			480	SOUTH RESERVOIR LIGHTS	1	20	11		
	240			CONTROL VALVE, 8" & 12"	1	20	13		
		120		HSP #1 PANAMETRICS	1	20	15		
			480	HSP #1 PANEL HEATER	1	20	17		
	480			CATHODIC PROTECTION PANEL	1	20	19		
		480		SWGR LIGHTS, RECEPTACLES	1	20	21		
			480	HSP #10 TEST POWER	1	20	23		
	840			HSP #10 MOTOR OPERATED VALVE	3	20	25		
		840		-	-	-	27		
			840	-	-	-	29		
-								19 M H	

- View 2 of 3:
- Total L1, L2, and L3 VA loads at bottom
- Total both sides of VA load subtotals at bottom

			480	HSP #10 TEST	1	20	23	24	L	
_	840			HSP #10 MOTO	3	20	25	26		
		840		-		_	-	27	28	
			840	-		-	-	29	30	
	840			HSP #6 MOTO	R OPERATED VALVE	3	20	31	32	
		840		-		-	-	33	34	
			840	-	-	I	35	36		
	480			HSP #6 HEATE	1	20	37	38		
		360		TANK A, LIGHTS, RECEPTACLES			20	39	40	
			480	TANK A, HEATER			20	41	42	
	3720			TOTAL "L1"				72	:00	
		3960		TOTAL "L2"				67	20	
			4440	TOTAL "L3"				73	20	
					TOTAL LOAD (V.	A) =	21240			
					ES =	: 3				
					∀) =	= 208				
					= 59.0					
					= 1.25					
					A) =	73.7				
					100					
-										

- View 3 of 3:
- Add all VA loads for entire panelboard
- Calculate continuous current demand
- Multiply by 125% to calculate minimum current bus rating
- Select next available bus rating size

1				I		
_	-	-	35	36		
HSP #6 HEATER	1	20	37	38		
TANK A, LIGHTS, RECEPTACLES	1	20	39	40		
TANK A, HEATER	1	20	41	42		
TOTAL "L1"		7200				
TOTAL "L2"		6720				
TOTAL "L3"	7320					
TOTAL LOAD (V.	21240					
PHASE	3					
VOLTAGE (*	208					
TOTAL CURRENT (.	59.0					
DERATIN	1.25					
MINIMUM BUS RATING (.		73.7				
SELECTED BUS RATING (.		1(00			

TVSS Design

- TVSS = Transient Voltage Surge Suppression
- A TVSS unit is designed to protect downstream equipment from the damaging effects of a high voltage spike or transient
- The TVSS unit essentially clips the higher portions of the voltage spike and shunts that energy to ground
- Thus, the TVSS unit should be sized to accommodate higher levels of energy
- The small multiple outlet strip for your home television or computer is similar but not the same

TVSS Design

- Energy level depends on where in the power system you place these TVSS units
- The lower in the power system the TVSS unit is located, the less likely the voltage spike will be high
- Some of the energy is dissipated through various transformers and lengths of cables, or impedance
- However, it would be prudent engineering to always place a TVSS unit in front of each panelboard for additional protection for all loads fed from the panelboard

TVSS Design

- Cost is not great for TVSS units
- Prudent investment for insurance to protect loads
- More important is placing TVSS units further upstream in power system to protect all loads
- 480 V switchgear, 480 V motor control center, 480 V panelboard, 208 V panelboard, etc.
- Important to have LED lights indicating functionality of TVSS unit

Short Circuit Impact on Conductors

- The available short circuit can have an impact on the size of the conductors in each circuit
- The upstream breaker or fuse must clear the fault before the conductor burns up
- The "time to burn" depends on the size of the conductor and the available short circuit
- Most important: the higher the short circuit, the quicker the fault must be cleared
- Okonite has an excellent table that shows this relationship

Short Circuit Impact on Conductors

10000 A Short Circuit

10000 A Short Circuit

BLACK & VEATCH

Short Circuit Impact on Conductors

- For same short circuit, larger conductor allows more time to clear fault
- Must select proper breaker size, or adjust trip setting if adjustable breaker to clear fault within the "burn through" time
- Same for fuses when fuses are used

