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INTRODUCTION

Two methods have evolved for the design of nonrecursive (FIR) filters
over the past 30 years or so:

• The window method

• The weighted-Chebyshev method
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INTRODUCTION

Window Method

The window method uses the Fourier series in conjunction with a
class of functions known as window functions.

Advantages

• Closed-form method.

• It is easy to apply.

• The design entails a relatively insignificant amount of
computation.

Disadvantages

• Designs are suboptimal.

• A higher-order filter is needed to satisfy the required
specifications.

• A higher-order filter means more computations per sample,
which implies that these filters are slower and less efficient in
real-time applications.
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INTRODUCTION Cont’d

Weighted-Chebyshev Method

This is an iterative multi-variable optimization method based on the
Remez Exchange Algorithm.

Advantages

• Designs are optimal.

• Method is very flexible - can be used to design filters,
differentiators, Hilbert transformers, etc.

• It yields equiripple solutions.

• Minimum filter order is achieve for the required specifications.

• Minimum filter order implies a more efficient and faster filter for
real-time applications.

Disadvantages

• Their design requires a very large amount of computation.

• Not suitable for applications where the design has to be carried
out in real- or quasi-real time, for example, in programable or
adaptable filters.
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INTRODUCTION Cont’d

Objectives

• The purpose of the lecture is the describe the basics of the
weighted-Chebyshev method.

• Examine ways by which the efficiency of the design process can
be improved and the amount of computation reduced.

• Suggest possible leads to further research on the subject.
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INTRODUCTION Cont’d

Historical Evolution

The development of the weighted-Chebyshev method is as follows:

• Herrmann published a short paper in Electronics Letters in May
1970.

• Herrmann’s contribution was followed soon after, in March 1971,
by a paper by Hofstetter, Oppenheim, and Siegel.

• These contributions were followed by a series of papers, during
the seventies, by Parks, McClellan, Rabiner, and Herrmann.

• These developments led, in turn, to the well-known
McClellan-Parks-Rabiner computer program for the design of
nonrecursive filters which has found widespread applications.

• The approach to weighted-Chebyshev filters to be presented is
based on some of the papers published by McClellan, Parks, and
Rabiner and includes several enhancements proposed by the
speaker.

NOTE: See bibliography for details.
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PROBLEM FORMULATION

• Consider a nonrecursive filter characterized by the transfer
function

H(z) =
N−1∑
n=0

h(nT )z−n

and assume that

– N is odd,

– the impulse response is symmetrical, and

– the sampling frequency is ωs = 2π.

• Since T = 2π/ωs = 1 s, the frequency response of the filter can
be expressed as

H(ejω) = e−jcωPc(ω)

where

Pc(ω) =

c∑
k=0

ak cos kω (A)

is the gain function and

a0 = h(c)

ak = 2h(c − k) for k = 1, 2, . . . , c

c = (N − 1)/2

• Note that Pc(ω) is the frequency response of a noncausal version
of the required filter.
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ERROR FUNCTION

• If e−jcωD(ω) is the idealized frequency response of the desired
filter and W (ω) is a weighting function, an error function E(ω)
can be constructed as

E(ω) = W (ω)[D(ω) − Pc(ω)]

where

Pc(ω) =
c∑

k=0

ak cos kω

• If |E(ω)| is minimized such that

|E(ω)| = |W (ω)[D(ω)− Pc(ω)]| ≤ δp for ω ∈ Ω (B)

with respect to some compact (dense) subset of the frequency
interval [0, π], say Ω, a filter can be obtained in which

|E0(ω)| = |D(ω) − Pc(ω)| ≤ δp

|W (ω)| for ω ∈ Ω
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LOWPASS FILTERS

In the case of a lowpass filter, the minimization of |E(ω)| will force the
inequality

|E0(ω)| = |D(ω) − Pc(ω)| ≤ δp

|W (ω)| for ω ∈ Ω (C)

where

D(ω) =

{
1 for 0 ≤ ω ≤ ωp

0 for ωa ≤ ω ≤ π

In effect, a minimization algorithm will force the actual gain function
Pc(ω) to approach the ideal gain function D(ω) as depicted in the
graph.
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LOWPASS FILTERS Cont’d

• If

W (ω) =

{
1 for 0 ≤ ω ≤ ωp
δp

δa
for ωa ≤ ω ≤ π

then from Eq. (C), i.e.,

|E0(ω)| = |D(ω) − Pc(ω)| ≤ δp

|W (ω)| for ω ∈ Ω

we get

|E0(ω)| ≤
{

δp for 0 ≤ ω ≤ ωp

δa for ωa ≤ ω ≤ π

• Weighted-Chebyshev filters are so called because they have an
equiripple amplitude response just like Chebyshev filters, as
shown in the graph.

There is no other relation between weighted-Chebyshev and
Chebyshev filters!
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MINIMAX PROBLEM

The most appropriate approach for the solution of the optimization
problem just described is to solve the minimax problem

minimize
x

{max
ω

|E(ω)|}

where
x = [a0 a1 · · · ac]

T

The solution of this problem exists by virtue of the so-called
alternation theorem.
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ALTERNATION THEOREM

If Pc(ω) is a linear combination of r = c + 1 cosine functions of the
form

Pc(ω) =

c∑
k=0

ak cos kω

then a necessary and sufficient condition that Pc(ω) be the unique,
best, weighted-Chebyshev approximation to a continuous function
D(ω) on Ω, where Ω is a compact (dense) subset of the frequency
interval [0, π], is that the weighted error function E(ω) exhibit at least
r + 1 extremal frequencies in Ω, i.e., there must exist at least r + 1
points ω̂i in Ω such that

ω̂0 < ω̂1 < · · · < ω̂r

E(ω̂i) = −E(ω̂i+1) for i = 0, 1, . . . , r − 1

and
|E(ω̂i)| = max

ω∈Ω
|E(ω)| for i = 0, 1, . . . , r
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ALTERNATION THEOREM Cont’d

• From the alternation theorem and Eq. (B), i.e.,

E(ω) = W (ω)[D(ω) − Pc(ω)]

we can write

E(ω̂i)) = W (ω̂i))[D(ω̂i)) − Pc(ω̂i))] = (−1)iδ

for i == 0, 1, . . . , r, where δ is a constant.

• The above system of equations can be put in matrix form as

⎡
⎢⎢⎢⎣

1 cos ω̂0 cos ω̂0 · · · cos ω̂0
1

W (ω̂0)
1 cos ω̂1 cos ω̂1 · · · cos ω̂1

1
W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos ω̂r · · · cos ω̂r

1
W (ω̂r)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1
...
ac

δ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

D(ω̂0)

D(ω̂1)
...

D(ω̂r−1)

D(ω̂r)

⎤
⎥⎥⎥⎥⎥⎦

• If the extremal frequencies (or extremals for short) were known,
coefficients ak and, in turn, the frequency response of the filter
could be computed using Eq. (A), i.e.,

Pc(ω) =

c∑
k=0

ak cos kω

• The solution of this system exists since the above
(r + 1) × (r + 1) matrix can be shown to be nonsingular.
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REMEZ EXCHANGE ALGORITHM
The Remez exchange algorithm is an iterative multivariable algorithm
which is naturally suited for the solution of the minimax problem just
described.

It is based on the second optimization method of Remez.

(See bibliography.)
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BASIC REMEZ EXCHANGE ALGORITHM

1. Initialize extremal frequencies ω̂0, ω̂1, . . . , ω̂r and ensure that an
extremal is assigned at each band edge.

2. Solve the system of equations to get δ and the coefficients
a0, a1, . . . , ac.

3. Using the coefficients a0, a1, . . . , ac, calculate Pc(ω) and the
magnitude of the error

|E(ω)| = |W (ω)[D(ω) − Pc(ω)]|

4. Locate the frequencies
∩
ω0,

∩
ω1, . . . ,

∩
ωρ at which |E(ω)| is

maximum and |E(
∩
ωi)| ≥ δ.

(These frequencies are potential extremals for the next iteration.)

5. Compute the convergence parameter

Q =
max |E(

∩
ωi)| − min |E(

∩
ωi)|

max |E(
∩
ωi)|

where i = 0, 1, . . . , ρ.

6. Reject ρ − r superfluous potential extremals
∩
ωi according to an

appropriate rejection criterion and renumber the remaining
∩
ωi by

setting ω̂i =
∩
ωi for i = 0, 1, . . . , r.

7. If Q > ε, where ε is a convergence tolerance (say ε = 0.01),
repeat from step 2; otherwise continue to step 8.

8. Compute Pc(ω) using the last set of extremal frequencies; then
deduce h(n), the impulse response of the required filter, and stop.
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INITIALIZATION OF EXTREMAL FREQUENCIES

BBands: : 1
Extremals: : r+1 1 (12)
Intervals: : r r (11)

B1

W0=B1/r

1 2 3 12

Bands: : 2
Extremals: : r+1 1 (13)
Intervals: : r-1 1 (11)

W1=B1/m1 W2=B2/m2

1 2 3 13

Bands: : 3
Extremals: : r+1 1 (14)
Intervals: : r-2 2 (11)

W1=B1/m1

W3=B3/m3W2=B2/m2

1 2 3 14
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INITIALIZATION OF EXTREMAL FREQUENCIES Cont’d

For a filter with J bands with bandwidths B1, B2, . . . , BJ , the number
of extremals and interval between extremals for each band can be
calculated by using the following formulas:

W0 =
1

r + 1 − J

J∑
j=1

Bj

mj =

(
Bj

W0
+ 0.5

)
for j = 1, 2, . . . , J − 1

and mJ = r −
J−1∑
j=1

(mj + 1)

Wj =
Bj

mj
for j = 1, 2, . . . , J

where

r =
N + 1

2
and N is the filter length.
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UPDATING OF EXTREMALS

• In each iteration the extremals need to be updated — this is done
by finding the maxima of the error function

|E(ω)| = |W (ω)[D(ω) − Pc(ω)]|

• This could be done by solving the system

⎡
⎢⎢⎢⎣

1 cos ω̂0 cos ω̂0 · · · cos ω̂0
1

W (ω̂0)
1 cos ω̂1 cos ω̂1 · · · cos ω̂1

1
W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos ω̂r · · · cos ω̂r

1
W (ω̂r)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1
...
ac

δ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

D(ω̂0)
D(ω̂1)

...
D(ω̂r−1)

D(ω̂r)

⎤
⎥⎥⎥⎥⎥⎦

for the coefficients ak and then calculating

Pc(ω) =
c∑

k=0

ak cos kω

and in turn E(ω).

• This approach is inefficient and may be subject to numerical
ill-conditioning, in particular if δ is small and N is large.

Note that a 50 × 50 matrix is quite typical.
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UPDATING OF EXTREMALS Cont’d

• An alternative and more efficient approach is to deduce δ

analytically (by using Cramer’s rule) and then interpolate Pc(ω)
on the r frequency points using the barycentric form of the
Lagrange interpolation formula, as follows:

• Calculate parameter δ as

δ =

r∑
k=0

αkD(ω̂k)∑r
k=0 (−1)kαk

W (ω̂)

• With δ known, Pc(ω) can be obtained as

Pc(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ck for ω = ω̂0, ω̂1, . . . , ω̂r−1
r−1∑
k=0

βkCk

x − xk

r−1∑
k=0

βk

x − xk

otherwise

where

αk =
r∏

i=0, i �=k

1

xk − xi

βk =

r−1∏
i=0, i �=k

1

xk − xi

Ck = D(ω̂k) − (−1)k δ

W (ω̂k)

with
x = cosω and xi = cos ω̂i for i = 0, 1, . . . , r
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REJECTION OF SUPERFLUOUS POTENTIAL EXTREMALS

• It follows from the alternation theorem that the minimized error
function |E(ω)| has precisely r + 1 extremals where
r = (N − 1)/2.

In addition, the problem formulation is such that there must be
exactly r + 1 extremals in each iteration.

• Analysis will show that |E(ω)| can have as many as r + 2J − 1
maxima where J is the number of bands.

If in any iteration the number of maxima exceeds r + 1, then the
iteration is said to have generated superfluous potential
extremals.

For example, if in some iteration ρ + 1 potential extremals are
generated with ρ > r, then ρ − r potential extremals must be
rejected.

• In the standard McClellan, Rabiner, and Parks algorithm, this
difficulty is circumvented by rejecting the ρ − r potential

extremals
∩
ωi that yield the lowest error |E(ω)|.
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COMPUTATION OF IMPULSE RESPONSE

• The impulse response in Step 8 of the algorithm can be
determined by recalling that function Pc(ω) is the frequency
response of a noncausal version of the required filter.

• The impulse response of the noncausal filter, denoted as h0(n)
for −c ≤ n ≤ c, can be determined by computing Pc(kΩ) for
k = 0, 1, . . . , c where Ω = 2π/N , and then using the inverse
discrete Fourier transform.

• It can be shown that

h0(n) = h0(−n) =
1

N

{
Pc(0) +

c∑
k=1

2Pc(kΩ) cos

(
2πkn

N

)}

for n = 0, 1, . . . , c.

• The impulse response of the required causal filter is given by

h(n) = h0(n − c)

for n = 0, 1, . . . , c.
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EXAMPLE

Band D(ω) W (ω) Left band edge Right band edge

1 1 1 0 1.0
2 0 0.4 1.25 π

Sampling frequency: 2π



23

+ +

+ +

Iteration #3

Iteration #4
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Iteration #5

Iteration #6
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SELECTIVE STEP-BY-STEP SEARCH

• When the system of equations

⎡
⎢⎢⎢⎣

1 cos ω̂0 cos ω̂0 · · · cos ω̂0
1

W (ω̂0)
1 cos ω̂1 cos ω̂1 · · · cos ω̂1

1
W (ω̂1)

· · · · · · · · · · · · · · · · · ·
1 cos ω̂r cos ω̂r · · · cos ω̂r

1
W (ω̂r)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1
...
ac

δ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

D(ω̂0)

D(ω̂1)
...

D(ω̂r−1)
D(ω̂r)

⎤
⎥⎥⎥⎥⎥⎦

is solved, the error function |E(ω)| is forced to satisfy the relation

|E(ω̂i)| = |W (ω̂i)[D(ω̂i) − Pc(ω̂i)]| = |δ|

• This relation can be satisfied in a number of ways but the most
likely possibility for the jth band is illustrated below where ωLj

and ωRj are the left-hand and right-hand edges, respectively.

!4j
^

+

!3jˆ

−

!5jˆ

−

!6jˆ

+

!2jˆ

+ −−

!7jˆ

!Rj

!1jˆ

!Lj

|±|

|E(!)|
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SELECTIVE STEP-BY-STEP SEARCH Cont’d

Because of the special nature of the error function

(a) the maxima of |E(ω)| can be easily found by searching in the
vicinity of the extremals;

(b) gradient information can be used to expedite the search for the
maxima of |E(ω)|; and

(c) the closer we get to the solution, the closer are the maxima of the
error function to the extremals.

Thus by using a selective step-by-step search, a large amount of
computation can be eliminated.
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SELECTIVE STEP-BY-STEP SEARCH Cont’d

Unfortunately, extra ripples can arise at the band edges, as shown:

First and Last bands:

ωµjJˆω(µj−1)Jˆ

ωµjJˆ

π

ω(µj−1)Jˆ

0

ω2jˆ

|δ|

|E(ω)|

|δ|

π0

(b) (c)

ω

ω1jˆ

ω2jˆ
(d) (e)

ω1jˆ
ω
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SELECTIVE STEP-BY-STEP SEARCH

Interior bands:

|δ|

|E(ω)|

( f )

ωLj
ωRj

ωµjjˆω(µj−1)jˆ
(g)

ω1jˆ ω2jˆ ω3jˆ

ω2jˆ

|δ|

(h)

ωLj
ωRj

ω(µj−1)jˆ
(i)

ω1jˆ ωµjjˆ
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CUBIC INTERPOLATION
Increased computational efficiency can be achieved by using a search
based on cubic interpolation.

Assuming that the error function shown in the figure can be
represented by the third-order polynomial

|E(ω)| = M = a + bω + cω2 + dω3

where a, b, c, and d are constants then

dM

dω
= G = b + 2cω + 3dω2

Hence, the frequencies at which M has stationary points are given by

ω̄ =
1

3d

[
−c ±

√
(c2 − 3bd)

]
Therefore, |E(ω)| has a maximum if

d2M

dω2 = 2c + 6d
∩
ω < 0 or

∩
ω < − c

3d

ω1 ω2 ω3

ω

~ ~ ~
ω

|E(ω)|

∩
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CUBIC INTERPOLATION Cont’d

• The cubic interpolation method requires four function
evaluations per potential extremal consistently.

• The selective step-by-step search may require as many as 8
function evaluations per potential extremal in the first two or
three iterations but as the solution is approached only two or
three function evaluations are required.

• By using the cubic interpolation to start with and then switching
over to the step-by-step search, an very efficient algorithm can be
constructed.

• The decision to switch from cubic to selective can be based on
the value of the convergence parameter Q (see Step 5).

Switching from the cubic to the selective when Q is reduced
below 0.65 works well.
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IMPROVED REJECTION SCHEME FOR
SUPERFLUOUS POTENTIAL EXTREMALS

• If an extremal does not move from one iteration to the next, then
the minimum value of E(

∩
ωi) is simply δ, as can be easily shown,

and this happens quite often even in the first or second iteration
of the Remez algorithm.

As a consequence, rejecting potential extremals on the basis of

the individual values of E(
∩
ωi) tends to become random and this

can slow the Remez algorithm quite significantly particularly for
multiband filters.

• An improved scheme for the rejection of superfluous extremals
based the rejection on the lowest average band error as well as

the individual values of E(
∩
ωi) is described in the next

transparency.
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IMPROVED REJECTION SCHEME FOR SUPERFLUOUS

POTENTIAL EXTREMALS Cont’d

1. Compute the average band errors

Ej =
1

νj

∑
∩
ωi∈Ωj

|E(
∩
ωi)| for j = 1, 2, . . . , J

where Ωj is the set of extremals in band j given by

Ωj = {∩
ωi : ωLj ≤ ∩

ωi ≤ ωRj}
νj is the number of potential extremals in band j, and J is the
number of bands.

2. Rank the J bands in the order of lowest average error and let
l1, l2, . . . , lJ be the ranked list obtained, i.e., l1 and lJ are the
bands with the lowest and highest average error, respectively.

3. Reject one
∩
ωi in each of bands l1, l2, . . . , lJ−1, l1, l2, ... until

ρ − r superfluous
∩
ωi are rejected.

In each case, reject the
∩
ωi, other than a band edge, that yields the

lowest |E(
∩
ωi)| in the band.

EXAMPLE

If J = 3, ρ − r = 3, and the average errors for bands 1, 2, and 3 are

0.05, 0.08, and 0.02, then
∩
ωi are rejected in bands 3, 1, and 3.

Note that potential extremals are not rejected in band 2 which is the
band of highest average error.
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Iteration #3

Iteration #4
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Iteration #5

Iteration #6
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COMPARISONS — Amount of Computation

Type of No. of Range Ave. Funct. Evals. Saving, %
Filter Examples of N A B C C versus B C versus A

LP 45 9-101 2691 722 372 48.9 86.3
HP 42 9-101 2774 710 356 49.9 87.2
BP 44 21-89 2777 667 338 49.3 87.8
BS 35 21-91 2720 639 336 47.4 87.6

A: Exhaustive search
B: Selective search
C: Selective plus cubic search



36

+ +

+ +

COMPARISONS — Robustness

Type of No. of No. Failures
Filter Examples A B C

LP 46 1 0 0
HP 43 1 0 0
BP 50 3 2 5
BS 45 6 8 8

A: Exhaustive search
B: Selective search
C: Selective plus cubic search
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CONCLUSIONS

• Three techniques that bring about substantial improvements in
the efficiency of the Remez algorithm have been described:

– A step-by-step exhaustive search

– A cubic interpolation search

– An improved scheme for the rejection of superfluous
potential extremals

• Extensive experimentation has shown that the selective and
cubic interpolation searches reduce the amount of computation
required by the Remez algorithm by almost 90% without
degrading its robustness.

The rejection scheme described increases the efficiency and
robustness of the Remez algorithm further but the scheme has
not been compared with the original method of McClellan,
Rabiner, and Parks.

• For off-line applications, the Remez algorithm continues to be the
method of choice for the design of linear-phase filters, multiband
filters, differentiators, Hilbert transformers.

• Despite the improvements described, the Remez continues to
require a large amount of computation and further research
needs to be undertaken to make it suitable for applications where
the design has to be done in real or quasi-real time.

• More work needs to be done on the design of systems with
complex coefficients, on the design of approximately
linear-phase filters, on the application of the Remez algorithm for
the design of recursive (IIR) filters, and also to reduce the amount
of computation further.
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