Q-LODS[®] Shaping your Processes for Competitive Advantage

Integrating Lean, Six Sigma, and CMMI

David N. Card dca@q-labs.com

France

Germany

Sweden

United Kingdom

United States

Agenda

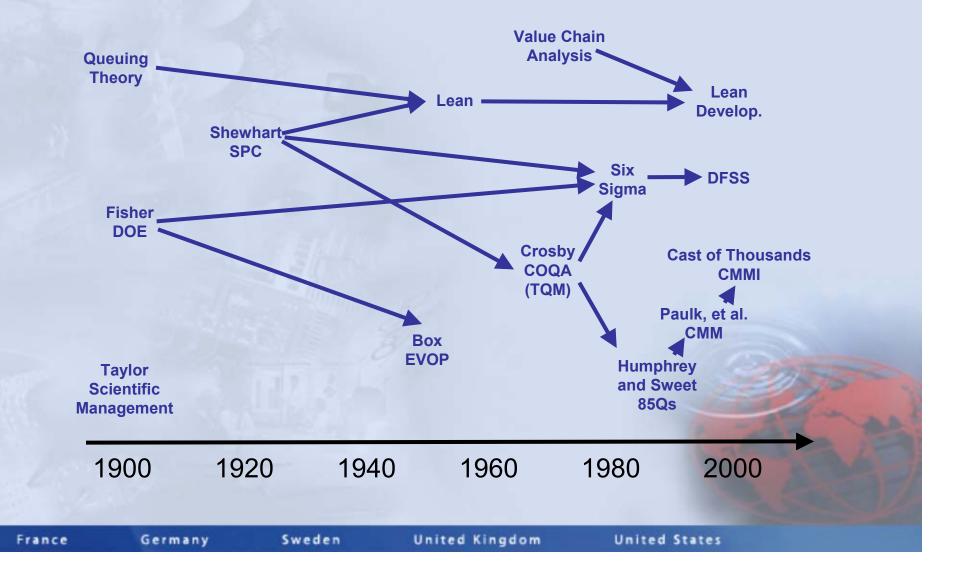
- Problem Statement
- A Little History
- Popular Approaches
- Comparison of Approaches
- Summary

Problem

- Adoption of Six Sigma and Lean is increasing among organizations that already employ CMMIbased software process improvement.
- These approaches are superficially different:
 - Language and terminology
 - Consultants and training
 - Sponsoring professional societies
- Are these approaches incompatible?

Solution

- Six Sigma, Lean, and CMMI are approaches to Continuous Improvement that can be integrated in ways that yield synergy rather than interference.
- These approaches derive from the same historical roots and address the same objective -
 - Efficient production of products of exceptionally high quality
- Focusing on the principles rather than the techniques and terminology helps to understand the relationships


A Little History

 Concern for Continuous Improvement is not new and won't go away:

"If someone gave me eight hours to chop down a tree, I would spend six hours sharpening the axe." *Abraham Lincoln*

"The difference between previous total quality approaches and the Six Sigma concept was a matter of focus." *Mikel Harry*

Some Historical Influences

What are These Approaches?

- CMMI a framework for managing processes and integrating activities across an organization
- Lean a set of principles for efficient and effective processes
- Six Sigma a problem-solving approach that addresses specific improvement needs through improvement projects

Common Themes

- Focus on eliminating defects and rework
- Reliance on measurement and statistical methods
- Emphasis on understanding and reducing variability
- Adaptation necessary to transition approaches beyond manufacturing
- Trend towards over-simplification and "window dressing" with popularization

What's the CMMI?

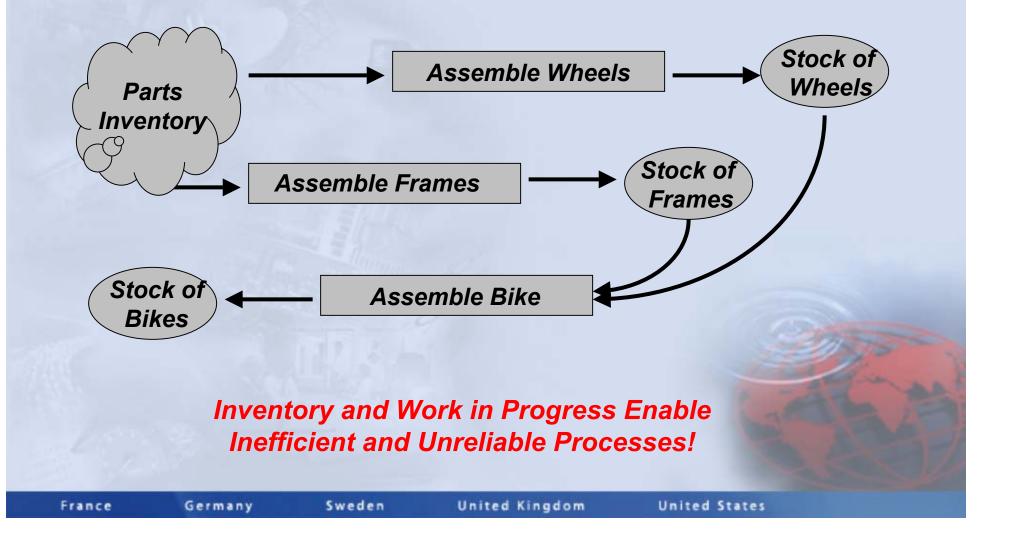
- An adaptation and extension of Crosby's QMMG to systems and software development
- A synthetic benchmark of generic practices
- A framework for evaluation and comparison of engineering processes

Quality Management Maturity Grid

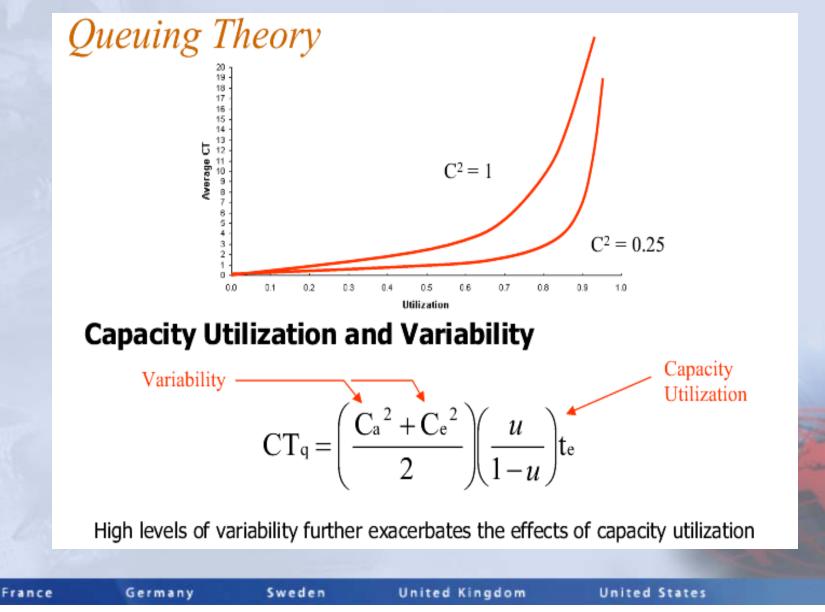
	QUALITY MANAGEMENT MATURITY GRID Rater			Unit		
	Measurement Categories	Stage I: Uncertainty	Stage II: Awakening	Stage III: Enlightenment	Stage IV: Wisdom	Stage V: Certainty
	Management un- derstanding and attitude	No comprehension of quality as a man- agement tool. Tend to blame quality department for "quality problems."	Recognizing that quality manage- ment may be of value but not willing to provide money or time to make it all happen,	While going through quality im- provement program learn more about quality manage- ment; becoming supportive and helpful.	Participating. Un- derstand absolutes of quality manage- ment. Recognize their personal role in continuing em- phasis.	Consider quality management an es- sential part of com- pany system.
Typical Manufacturer	Quality organiza- tion status	Quality is hidden in manufacturing or engineering depart- ments. Inspection probably not part of organization. Em- phasis on appraisal and sorting.	A stronger quality leader is appointed but main emphasis is still on appraisal and moving the product. Still part of manufacturing or other,	Quality department reports to top man- agement, all ap- praisal is incorpo- rated and manager has role in manage- ment of company.	Quality manager is an officer of com- pany; effective sta- tus reporting and preventive action. Involved with con- sumer affairs and special assign- ments.	Quality manager on board of directors. Prevention is main concern. Quality is a thought leader.
Manufacturer	Problem handling	Problems are fought as they occur; no resolution; inade- quate definition; lots of yelling and accurations	Teams are set up to attack major prob- lems. Long-range solutions are not solicited.	Corrective action communication es- tablished. Problems are faced openly and resolved in an orderly way.	Problems are iden- tified early in their development. All functions are open to suggestion and improvement.	Except in the most unusual cases, problems are pre- vented.
	Cost of quality as % of sales	Reported: unknown Actual: 20%	Reported: 3% Actual: 18%	Reported: 8% Actual: 12%	Reported: 6.5% Actual: 8%	Reported: 2.5% Actual: 2.5%
	Quality improve- ment actions	No organized activ- ities. No under- standing of such activities.	Trying obvious "motivational" short-range efforts.	Implementation of the 14-step pro- gram with thorough understanding and establishment of each step.	Continuing the 14-step.program and starting Make Certain.	Quality improve- ment is a normal and continued activity.
	Summation of com- pany quality pos- ture	"We don't know why we have problems with quality."	"Is it absolutely necessary to always have problems with quality?"	"Through manage- ment commitment and quality im- provement we are identifying and re- solving our prob- lems."	"Defect prevention is a routine part of our operation."	"We know why we do not have prob- lems with quality."

Source: P. Crosby, Quality is Free, 1979

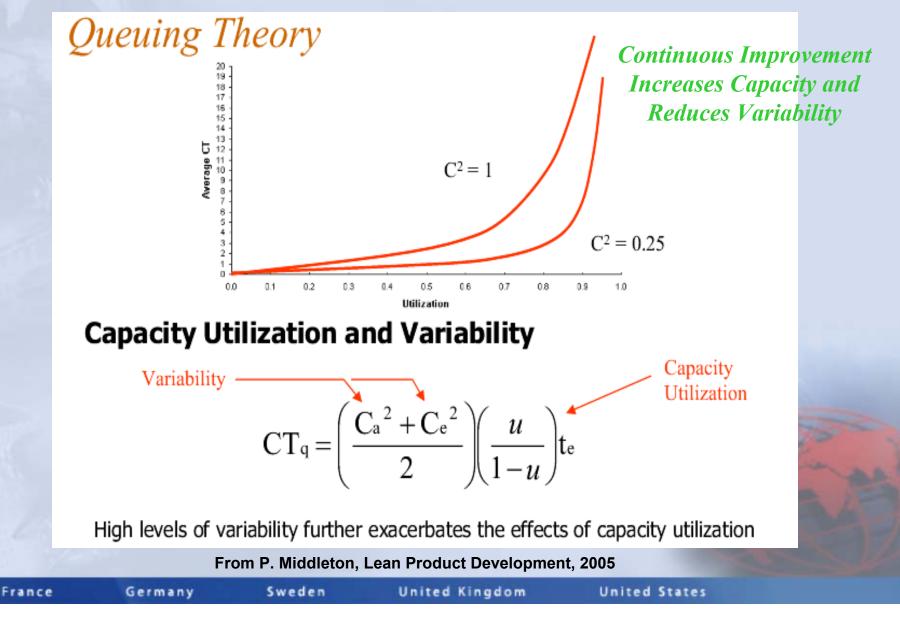
France


Focus of CMMI Levels

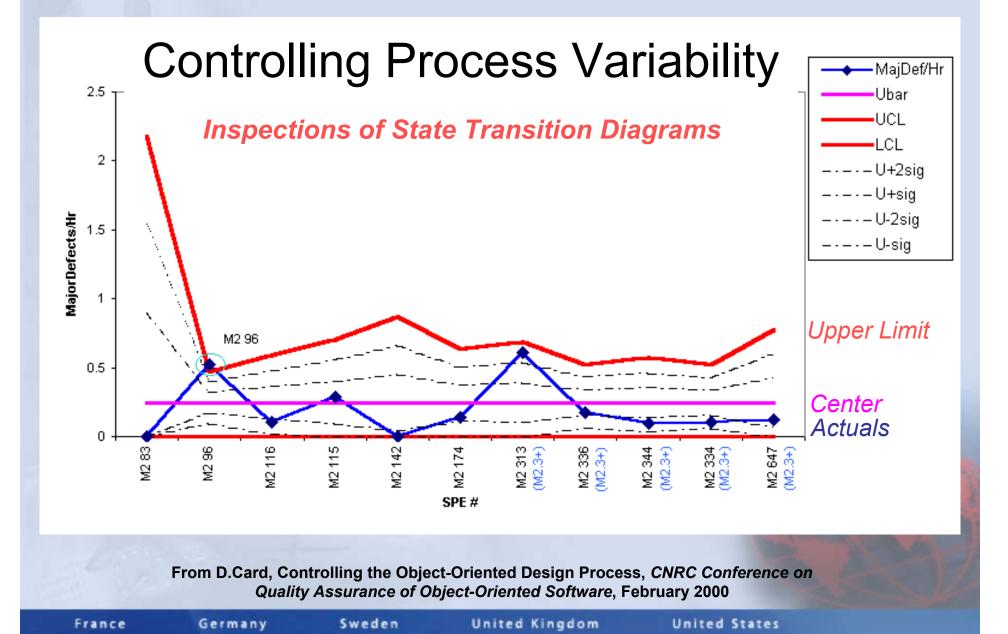
- Levels 2 and 3 address the definition of engineering and management processes
 - Organizational Process Definition
 - Organizational Process Focus
 - Others defining specific disciplines
- Levels 4 and 5 address the control and improvement of those processes
 - Organizational Process Performance (OPP)
 - Quantitative Project Management (QPM)
 - Causal Analysis and Resolution (CAR)
 - Organizational Innovation and Deployment (OID)


What is Lean?

- It is not about "light weight" processes
- "Lean" refers to reducing inventory and "work in progress"
- Lean is accomplished through robust processes
 - Simple
 - Reliable
 - Standardized
 - Enforced
- Based on principles from queuing theory


Example Manufacturing Process

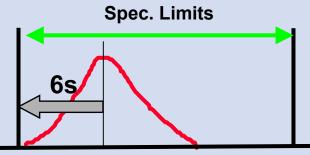
Limits to Performance



Limits to Performance

Reducing Work in Progress

- Small work packages
- Robust processes
- Capacity management
- Variability reduction
 - Tasks
 - Processes
- Minimal
 - Stockpiling/Waiting
 - Handoffs
 - External QA
- No redundant tasks



The Capacity Myth

- Most engineering organizations behave as if their system/software development capacity is elastic
 - Capacity expands to accommodate the need
 - Projects are planned in isolation
- Systems have limits to performance
 - Must understand the limits in order to optimize performance
 - Organizational performance must be managed

What is Six Sigma?

- An attractive slogan
- A business-focused philosophy employing statistical thinking to obtain competitive advantage

Performance Measure

- A goal for process capability (C_{pk} = 2.0)
- An integrated set of established techniques including statistical process control, design of experiments, quality function deployment, failure modes effects analysis, etc.

Components of Six Sigma

- Business case for improvement
- Measurement
- Breakthrough strategy
- Benchmarking
- Statistical methods
- Formal training
- Universal metric (DPMO)
- Design for Six Sigma (DFSS)

Many variations – no governing authority.

Business Case for Improvement

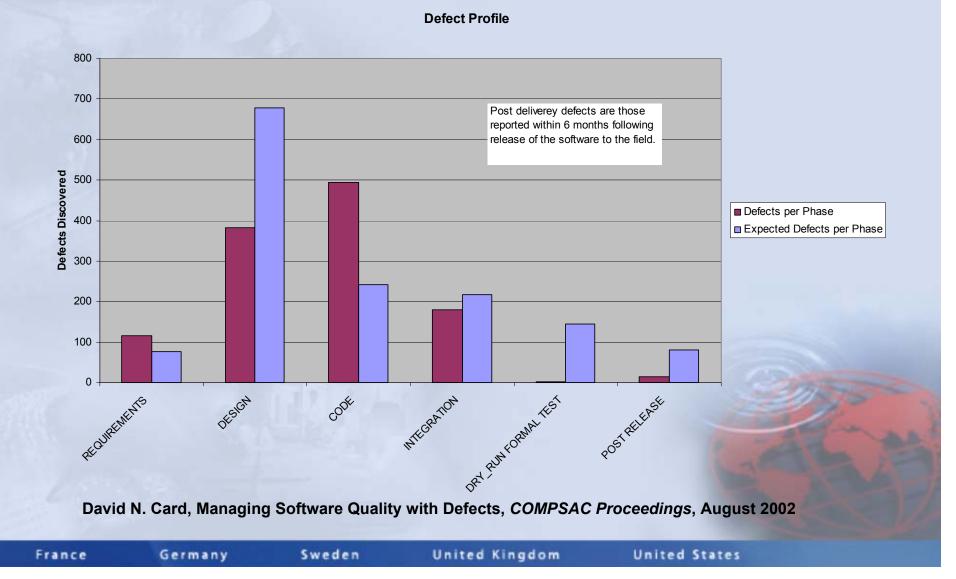
Reductions in the cost of quality exceed the cost of judicious investments in defect prevention

THE COST OF QUALITY						
SIGMA LEVEL	DEFECTS PER MILLION OPPORTUNITIES	COST OF QUALITY				
2	308,537 (Noncompetitive companies)	Not applicable				
3	66,807 Software L 1	25 - 40% of sales				
4	6,210 (Industry average) Manufacturing	15 – 25% of sales				
5	233	5 - 15% of sales				
6	3.4 (World class)	< 1% of sales				

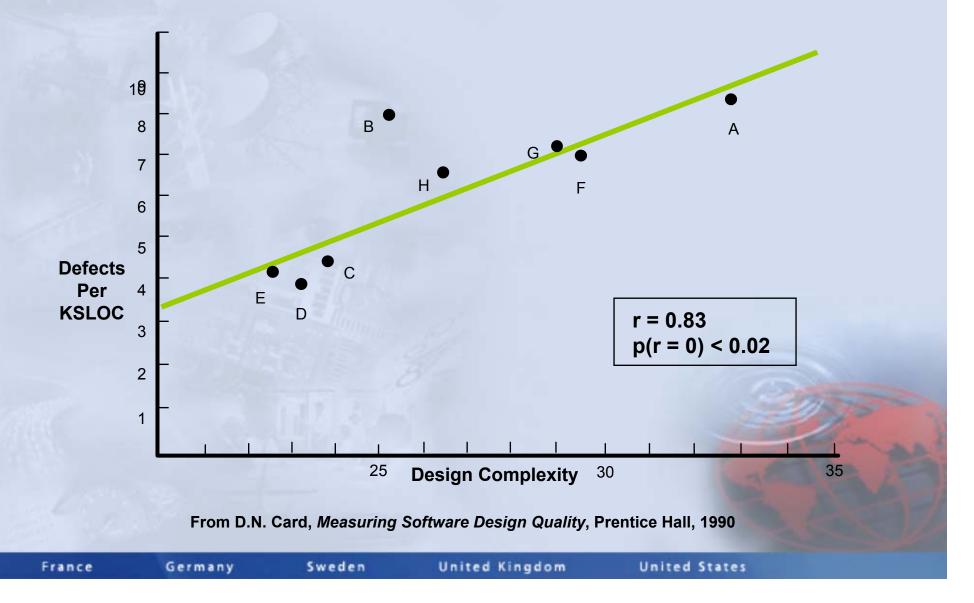
Source: M. Harry and W. Schroeder, Six Sigma, 2002

Breakthrough Strategy

A strategy for applying statistical and other techniques


	THE	SIX SIGMA ROAD	MAP	
A State of the state of the	STAGE	BREAKTHROUGH STRATEGY PHASE	OBJECTIVE Identify key business issues	
A K T H	Identification	Recognize Define		
	Characterization	Measure Analyze	Understand current performance levels	P
	Optimization Improvement Projects (DMA	Improve Control C)	Achieve K breakthrough B improvement T	JE
	Institutionalization	Standardize Integrate	Transform how day-to- day business is conducted	

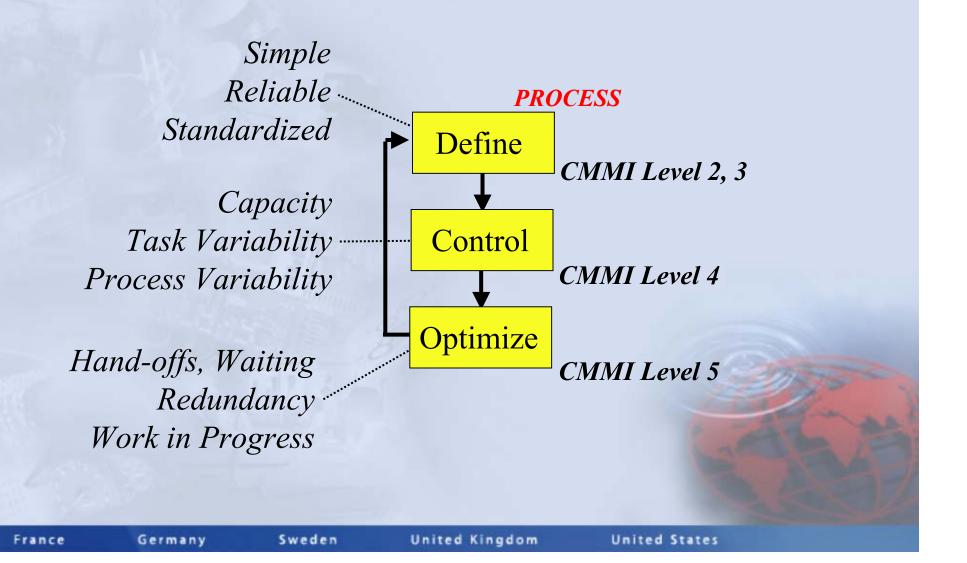
Source: M. Harry and W. Schroeder, Six Sigma, 2002


Design for Six Sigma

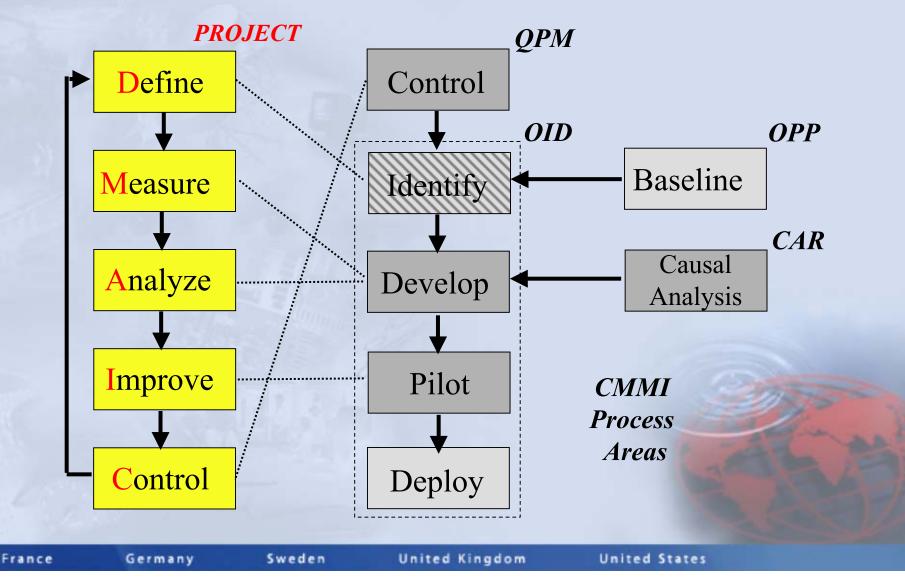
- DFSS includes both a process and product design component, but is not a design method
- Two basic strategies are employed:
 - Use standardized and proven parts in product (i.e., reuse and COTS) and processes
 - Minimize complexity in process (e.g., fewer steps) and product (i.e., increase producibility)
- Implies concurrent design of product and process (e.g., tailoring of organizational process)
- Focuses on ensuring "critical to quality" (CTQ) characteristics

Defects as a CTQ in Software

Producibility in Software


Comparison of Approaches

- High-level assessment of techniques:
 - Significant differences
 - Many similarities
 - Differences can be complementary
- Comparisons are approximate since only the CMMI has a "controlling authority"
- Principles are as important as techniques


CMMI-Based Improvement

- Maturity Model provides a framework for continual benchmarking
- Assessment-driven improvement strategy based on artifacts
- Performance not directly considered; Lean and Six Sigma focus on performance

Lean Principles and CMMI

DMAIC Cycle and CMMI

Significant Differences

CMM/CMMI
Focus on defining management and technical processes early
Organizational process definition used to capture best practices
Emphasis on infrastructure to ensure key processes addressed
Statistical approach intended often not implemented
Additional mechanisms to leverage external technology
Link to strategic planning weak and often ignored
Certification of assessors and organizations, not practitioners

Based on: Sorting Out Six Sigma and the CMM, IEEE Software, May 2000

Common Problems

- Difficulty adopting statistical methods
- Excessive focus on the "score"
 - CMMI Level
 - "Sigma" rating
- Tendency to do the "minimum" avoid the hard stuff
- Reluctance to recognize (and measure) the magnitude of software (and engineering) rework (*Typically 30-50%)

*For Example: Ray Dion, SEPG Conference, 1998

Dimensions for Integration

- Organization
- Planning
- Training
- Tools and Techniques
- Organizational processes

Summary

- CMMI translates many Six Sigma concepts into software and systems terminology
- Six Sigma is difficult for Level 1 organizations to implement, however Lean principles do apply
- Lean, Six Sigma, and CMMI-based process improvement are complementary
- Incorporating Lean principles and Six Sigma techniques helps organizations working towards Level 4 and 5 to deliver the best business results

If you are not going ahead, then you are falling back!

About Q-Labs

Consulting, training, and appraisals in software measurement, CMM/CMMI, ISO 9000, SPICE, etc.

International presence

- ➢ France
- ➢ Germany
- Sweden
- > UK
- > USA
- More than 100 employees
- ISO 9001 Certified

- A broad international client base, including
 A least all Representations
 - Alcatel, Bouygues Telecom, France Telecom, Orange
 - AXA, BNP Paribas, Banques Populaires
 - ABB, R. Bosch, EDF, IBM, Siemens, Schneider Electric, Thomson Detexis, Volvo, Sony
 - Atomic Energy Board of Canada, FAA, Norwegian Ministry of Justice, Swedish Civil Aviation Administration
 - Thales, Thomson, FMV, US Army TACOM

www.q-labsusa.com

United Kingdom