Practical Software and Systems Measurement

Objective Information for Decision Makers

PSM Overview

Department of Defense

US Army

Practical Software and Systems Measurement Scope and Audience

- Addresses Acquisition, Development, and Maintenance of Software and System Projects
- For Project Managers, Technical Leads, and Measurement Analysts
- Limited to Measurement for Project Management Purposes

References

PSM Book

- "Practical Software Measurement: Objective Information for Decision Makers"
- J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, F. Hall
- Addison-Wesley, Boston, 2002

Guidebook

- "Practical Software and Systems Measurement: A Foundation for Objective Project Management"
- Version 4.0b, October 2000

Practical Software and Systems Measurement How Measurement Helps

- Objective Insight into Project Performance
- Objective Information to Identify and Manage Risk
- Early Detection and Resolution of Problems
- Objective Team and Organizational Communications
- Ability to Assess Organizational Performance
- Ability to Defend and Justify Decisions

Overview Outline

- PSM Approach
- Plan Measurement
- Perform Measurement
- Summary and Resources

PSM Approach

PSM Key Concepts

- Measurement Is a <u>Process</u> Not a Pre-Defined List of Graphs or Reports
- Both <u>Data Collection and Analysis</u> Must Be Planned
- PSM Is Flexible Adapted to Meet Specific Project Information Needs
- PSM Supports the <u>Integrated Information</u> <u>Needs</u> of Both Acquirer and Supplier Organizations
- PSM Addresses the <u>Relationships and</u> <u>Tradeoffs</u> Between Project Objectives

Measurement Principles

- Use <u>Information Needs and Objectives</u> to Drive the Measurement Requirements
- Define and Collect Measures Based on the <u>Technical and Management</u> <u>Processes</u>
- Collect and Analyze Data at a <u>Level of</u> <u>Detail Sufficient to Identify and Isolate</u> <u>Problems</u>
- Implement an Independent Analysis
 Capability

Practical Software and Systems Measurement Measurement Principles (continued)

- Use a <u>Systematic Analysis Process</u> to Trace the Measures to the Decisions
- Interpret the Measurement Results in the <u>Context</u> of Other Project Information
- <u>Integrate</u> Measurement into the Project Management Process Throughout the Life Cycle
- Use the Measurement Process as a
 Basis for Objective Communications
- Focus Initially on **<u>Project-Level</u>** Analysis

Practical Software and Systems Measurement Measurement Activities

PSM [™]All rights reserved.

PSM Overview, 10

Practical Software and Systems Measurement PSM Approach Summary

- Measurement Must Address the Specific Information Needs of Each Unique Project
- The PSM Principles Define an Effective Measurement Process
- PSM Can Be Applied to All Projects
- PSM Is Based on Actual Experience from DoD, Government, and Industry Programs

Plan Measurement

PSM Version 5.0d, 12

Plan Measurement - Key Concepts

- Each Project Is Described by a Unique Set of Information Needs
- Unique Project Information Needs Usually Can Be Grouped into Seven Common "Information Categories"
- The Project Information Needs Drive the Selection of Measures
- The Measurement Definitions and Methods Are Determined by the Project Processes

Information Needs

- Objective A Project Goal or Requirement
- Obstacle An Area of Concern that Could Impact the Achievement of an Objective
 - Risk concern that may occur
 - Problem concern that has occurred
 - Lack of Information inadequate data

Practical Software and Systems Measurement Plan Measurement

Sources for Defining and Prioritizing Project Information Needs

- Risk Analysis Results
- **Project Constraints and Objectives**
- Leveraged Technologies
- Product Acceptance Criteria
- External Requirements
- Experience
- Planned-Decision Points

Practical Software and Systems Measurement PSM Measurement Hierarchy

Practical Software and Systems Measurement Information Categories

- Schedule and Progress
- Resources and Cost
- Product Size and Stability
- Product Quality
- Process Performance
- Technology Effectiveness
- Customer Satisfaction

PSM Mapping of Information Categories, Concepts, and Measures

Information Category - Measurable Concept - Measure				
Information Categories	Measurable Concepts	Prospective Measures		
Schedule and Progress	Milestone Completion Critical Path Performance Work Unit Progress	Milestone Dates Slack Time Requirements Traced Requirements Tested Problem Reports Opened Problem Reports Closed Reviews Completed Change Requests Opened Change Requests Resolved Units Designed Units Coded Units Integrated Test Cases Attempted Test Cases Passed Action Items Opened		
	Incremental Capability	Action Items Completed Components Integrated Functionality Integrated		
Resources and Cost	Personnel Effort	Staff Level Development Effort Experience Level Staff Turnover		
	Financial Performance	BCWS, BCWP, ACWP Budget Cost		
	Environment and Support Resources	Quantity Needed Quantity Available Time Available Time Used		
Product Size and Stability	Physical Size and Stability	Database Size Components Interfaces Lines of Code		
	Functional Size and Stability	Requirements Functional Changes Function Points		

PSM Mapping of Information Categories, Concepts, and **Measures** (continued)

Information - Category - Measure Mapping				
Information Categories	Measurable Concepts	Prospective Measures		
Product Quality	Functional Correctness	Defects		
		Age of Defects		
		Technical Performance Level		
	Supportability-Maintainability	Time to Restore		
		Cyclomatic Complexity		
	Efficiency	Utilization		
		Throughput		
		Response Time		
	Portability	Standards Compliance		
	Usability	Operator Errors		
-	Dependability-Reliability	Mean Time to Failure		
Process	Process Compliance	Reference Maturity Rating		
Performance	D = ==== :	Process Audit Findings		
	Process Efficiency	Productivity		
		Cycle Time		
	Process Effectiveness	Defects Contained		
		Defects Escaping		
		Rework Effort		
Ta a la carta an c	Taabaalaan Suitability	Rework Components		
Technology	Technology Suitability	Requirements Coverage		
Customor	Customor Foodback	Daselline Unanges		
Satisfaction		Award Eag		
Sausiacii011	Customer Support	Awalu ree Poquests for Support		
	Sustomer Support	Support Time		
		Support nine		

Practical Software and Systems Measurement Example of Mapping Project Information Needs

Practical Software and Systems Measurement Prioritize Information Needs

- Rank Information Needs Based on Priority at the Current Time
- Ranking May Be Set Through a Measurement Planning Workshop With Participant Consensus
 - Involve acquirer, supplier, PM, test, SW, etc.
- Priorities May Change in Each Phase as Different Issues Arise
 - Measurement program needs to be revised when this occurs

Practical Software and Systems Measurement Plan Measurement

Characterize Project Context

- Application Domain
- Life-Cycle Model or Activity Structure
- Product Structure
- Current Measurement Activities
- System and Software Processes and Technology
- Planned Sources of Components (e.g. new, reused, COTS)
- Process Maturity

Information Categories - Measurable Concepts

Schedule and Progress

- Milestone Completion
- Critical Path Performance
- Work Unit Progress
- Incremental Capability

Product Size and Stability

- Physical Size and Stability
- Functional Size and Stability

Product Quality

- Functional Correctness
- Supportability* Maintainability
- Efficiency
- Portability
- Usability
- Dependability* Reliability

Resources and Cost

- Personnel Effort
- Financial Performance
- Environment and Support Resources

Process Performance

- Process Compliance
- Process Efficiency
- Process Effectiveness

Technology Effectiveness

- Technology Suitability
- Technology Volatility

Customer Satisfaction

- Customer Feedback
- Customer Support
- *Systems Engineering

PSM ™ All rights reserved.

PSM Overview, 25

Measurable Concept

- An Idea About How an Information Need Can Be Satisfied:
 - Possible entities and attributes to be measured
 - Potential use of results in decision making
- May Be Implemented in Many Different
 Ways
- Each Measurable Concept Involves a Different Question
- PSM-Defined Measurable Concepts Are Widely Used

Entity - Attribute

Entities and Attributes are the basic elements of a measure.

- An Entity is the object that is measured
 - Entities include processes, products, projects, and resources
- A Measurable Attribute is a distinguishable property or characteristic of the Entity
 - Attributes are either quantitative or qualitative
 examples include hours, problems, source
 lines of code, and design units, e.g. classes

Concepts Relate to Key Questions

Information Category	Measurable Concept	Questions Addressed
Schedule and Progress	Milestone Completion	Is the project meeting scheduled milestones? Are critical tasks or delivery dates slipping?
	Work Unit Progress	How are specific activities and products progressing?
	Incremental Capability	Is capability being delivered as scheduled in incremental builds and releases?
Resources and Cost	Personnel Effort	Is effort being expended according to plan? Is there enough staff with the required skills?
	Financial Performance	Is project spending meeting budget and schedule objectives?
	Environment and Support Resources	Are needed facilities, equipment, and materials available?
Product Size and Stability	Physical Size and Stability	How much are the product's size, content, physical characteristics, or interfaces changing?
	Functional Size and Stability	How much are the requirements and associated functionality changing?
Product Quality	Functional Correctness	Is the product good enough for delivery to the user? Are identified problems being resolved?
	Supportability - Maintainability	How much maintenance does the system require? How difficult is it to maintain?
	Efficiency	Does the target system make efficient use of system resources?
	Portability	To what extent can the functionality be re-hosted on different platforms?
	Usability	Is the user interface adequate and appropriate for operations? Are operator errors within acceptable bounds?
	Dependability - Reliability	How often is service to users interrupted? Are failure rates within acceptable bounds?

Concepts Relate to Key Questions (continued)

Information Category	Measurable Concept	Questions Addressed
Process Performance	Process Compliance	How consistently does the project implement the defined processes?
	Process Efficiency	Are the processes efficient enough to meet current commitments and planned objectives?
	Process Effectiveness	How much additional effort is being expended due to rework?
Technology Effectiveness	Technology Suitability	Can technology meet all allocated requirements, or will additional technology be needed?
	Technology Volatility	Does new technology pose a risk due to too many changes?
Customer Satisfaction	Customer Feedback	How do our customers perceive the performance on this project? Is the project meeting user expectations?
	Customer Support	How quickly are customer support requests being addressed?

Practical Software and Systems Measurement Criteria for Selecting Prospective Measures

- Match with Information Need
- Measurement Effectiveness
- Nature of the Entities (i.e., processes and products) to Be Measured
- Cost and Availability of Data
- Life-Cycle Coverage
- External Data Requirements

Selecting Measures

Schedule and Progress

- Milestone completion
- Critical path performance
- <u>Work unit progress</u>
- Incremental Capability

Prospective Measures

- Requirements traced
- Requirements tested
- Requirements status
- Problem reports opened
- Problem reports closed
- Reviews completed
- Change requests opened
- Change requests resolved
- Units designed
- Units coded
- Units integrated
- Test cases attempted
- Test cases passed
- Action item opened
- Action item completed

Measurement Construct

- A Specification of a Prospective Measure
- A Specific Method for Implementing a Measurable Concept:
 - Specific entities and attributes
 - Pre-planned analyses
- Consists of Base Measures, Derived Measures, and Indicators
- The Information Product Is Comprised of a Collection of Measurement Constructs with Interpretations
- Multiple Constructs May Be Specified for a Single Concept and Information Need

Specify Measurement Constructs

- Information Need
- Information Category
- Indicator
 - Analysis Model
 - Decision Criteria
 - Base/Derived Measures
- Derived Measure(s)

NOTE: details will be defined in the next section, Measurement Information Model

- For Each Derived Measure:
 - Measurement Function
 - Base Measure(s)
- For Each Base Measure:
 - Measurement Method
 - Type of Method
 - Scale
 - Type of Scale
 - Unit of Measurement
 - Relevant Entity
 - Attribute

Measurement Construct Examples

- Four Major Components:
 - Description
 - Specification table
 - Additional analysis guidance
 - Implementation considerations
- Last Two Components Used in
 Developing Measurement Procedures
- See Appendix A of the PSM Book
- Similar Information Is Contained in the PSM Guidebook, Version 4.0b, Parts 3 and 5

Practical Software and Systems Measurement Plan Measurement

Identify Measurement Opportunities

- Take Advantage of Existing Tools and Measurement Activities:
 - Problem report databases
 - Configuration management systems
 - Project cost and schedule control systems
 - Design tools
- Consider Three Types of Data:
 - Historical results (previous projects)
 - Planning information
 - Actual performance
Develop Measurement Procedures

- Define the Specific Operations, Tools, and Responsibilities for Measurement Activities
- Address Both:
 - Data collection and storage
 - Data analysis and reporting
- Further Considerations Are Discussed in the Perform Measurement Section

Document Measurement Plan

- Purposes of Plan Include:
 - Integrate analysis and reporting into decision-making processes
 - Integrate data collection into data-generating processes
 - Provide a central source for definitions of measures and analyses
- Establish a <u>Concise</u> Working Document Subject to Change

Measurement Plan Content

- Introduction
- Project Description
- Measurement Roles, Responsibilities, and Communications
- Description of Project Information Needs
- Definition of Measurement Constructs
- Project Aggregation (Roll-Up) Structures
- Data Collection and Analysis Procedures
- Measurement Evaluation Criteria

Practical Software and Systems Measurement Plan Measurement Summary

- The Planning Activity Is Dynamic Project Information Needs and Processes Are Always Changing
- Success Depends on the Integration of the Measurement Process into the Project Processes
- An Effective Measurement Process Is Designed to Meet the Information Needs of Both Supplier and Acquirer Organizations
- PSM Provides a Systematic Approach for Planning a Measurement Process

Perform Measurement

PSM [™] All rights reserved.

Practical Software and Systems Measurement Measurement Activities

PSM [™]All rights reserved.

Practical Software and Systems Measurement Perform Measurement - Key Concepts

- This Activity Provides a Systematic Method for Converting Data into Usable Information
- Like Planning, Performing Must Be Flexible to Adapt to Changing Information Needs
- Analysis Is the Primary Task of This Activity - It Includes Estimating, Assessing Feasibility of Plans, and Tracking Performance Against Plans

Practical Software and Systems Measurement Perform Measurement

Analyze Data

- Indicators Are Systematically Generated, Analyzed, Interpreted, and Reported to:
 - Produce an assessment relative to known Information Needs
 - Identify new Information Needs (problems, risks, lack of information)

Generate Indicators

- "Standard" Indicators:
 - Pre-defined in measurement plan
 - Produced regularly
 - May be organized into "sets"
- "Special" Indicators:
 - Usually created as needed
 - May be decompositions of indicators to localize problems
 - May be new indicators that respond to new questions

Practical Software and Systems Measurement Generating Useful Indicators

- Use <u>Consistent</u> Conventions
- Keep It <u>Simple;</u> Keep the Message <u>Clear</u>
- Unique <u>Titles</u> Should Reflect Scope
- Include an <u>As Of</u> Line or Date
- Label Each <u>Axis</u> and Provide <u>Scale</u> <u>Markers</u>
- <u>Annotate</u> With Milestones and Significant Events
- Use <u>Same Axes and Scales</u> If Indicators Will Be Compared

Practical Software and Systems Measurement Measurement Analysis

Estimation Analysis

- Conducted to <u>Establish Target Values</u> or Numerical Expectations for Subsequent Activities and Parameters, Based on Currently Available Data
- Employs Special Types of Indicators (estimators), Adjusted by Performance Factors
- Predicts Values Such as:
 - Product size
 - Effort
 - Schedule
 - Quality

Feasibility Analysis

- Conducted to Determine Whether Plans and Targets Are <u>Realistic and Achievable</u>
- Conducted During the Initial Planning Activity and at All Subsequent Replans
- Looks at:
 - Basis for estimate
 - Realism of adjustments
 - Confidence in process
 - Changes in assumptions or environment
 - Comparisons of project parameters

Practical Software and Systems Measurement Performance Analysis

- Conducted to Determine Whether Development is Meeting the Plans, Assumptions, and Targets
- Conducted Periodically Once a Project has Committed to a Plan
- Looks at:
 - Leading indicators
 - Critical path items
 - Inconsistent trends

Practical Software and Systems Measurement PSM Analysis Model

Practical Software and Systems Measurement Details of the PSM Analysis Model

PSM [™]All rights reserved.

Using the PSM Analysis Model for Performance Analysis

- Relates Information Categories in Terms of Cause and Effect
- Helps Address the Difficult Management Questions:
 - Is there really a problem?
 - What is causing the risk?
 - What are the related Information Needs?
 - What corrective action should be taken?
- Requires Multiple Measures Indicators

Performance Analysis Example

- Real-Time System
- 2M + Source Lines of Code
- Multiple Suppliers
- Average Software Process Maturity
- New and Non-Developed Code (COTS/Reuse)
- Incremental Development Approach
- Key Issues and Objectives:
 - Meet platform deployment schedule
 - High product quality (reliability)
 - Successfully implement new technology

Software Productivity

30 May 96

PSM [™]All rights reserved.

Software Productivity

Software Productivity

30 Aug 98

Requirements Stability Build 1

³⁰ Aug 98

31 Aug 98

30 Aug 98

PSM [™]All rights reserved.

PSM [™] All rights reserved.

Design Progress Build 1 3,500 3,000 Number of Units Completing Design 2,500 2,000 --- Plan 1 -___ Plan 2 - Actual 1,500 1,000 Start of 500 Build 1 I&T 0 Mar 97 Sep 97 Jan 98 May 98 May 97 Jul 97 Nov 97 Mar 98

31 May 98

Problem Report Status Priority 1, 2, and 3 Problem Reports

30 Aug 98

Software Productivity

30 Aug 98

Performance Analysis Summary

- Problems Detected Using Measurement (low productivity)
- Underlying Causes Localized (requirements growth, low staffing, and code source)
- Alternative Replan Strategies Evaluated
- Measurement Supported an Informed
 Decision

Perform Measurement Summary

- Analysis Is Dynamic Analysis Must Respond to New and Changing Questions
- The PSM Analysis Model Links Information Needs and Measurement Results
- Both Quantitative and Qualitative Data
 Should Be Used
- Measurement Results Are the Basis for Risk Resolution, Financial Performance Analysis, and Performance Assessment

Summary and Resources

Summary

- PSM Is an Effective Measurement Approach that Includes:
 - Measurement based on project Information Needs
 - A systematic method of defining measures through the information model
 - A defined process for planning, performing, evaluating, and establishing a measurement program

Practical Software and Systems Measurement PSM Project Strategy

PSM [™]All rights reserved.

Practical Software and Systems Measurement PSM Products and Services

PSM Book

Technical Guidance (Guidebook V4.0b)

PSM Insight

Measurement Planning Workshops

PSM ™ All rights reserved.

For More Information

Cheryl Jones US Army TACOM-ARDEC AMSTA-AR-QAT-A Building 62 Picatinny Arsenal, NJ 07806

PSM Support Center 4 Old Station Rd. Severna Park, MD 21146

(973) 724-2644 (Voice) (973) 724-2382 (FAX) (973) 724-5638 (Voice) (410) 280-0576 (FAX)

psm@pica.army.mil PSM Home Page: www.psmsc.com

www.q-labsusa.com

PSM [™]All rights reserved.