Design Challenges of Next-Generation Wireless Communication SoCs

Teresa Meng Department of Electrical Engineering Stanford University

Communication SoC Technologies

- Lots of innovations and new ideas in communication signal processing
 - W-CDMA, DFE, OFDM, antenna beam-forming, MIMO, etc.
- What makes an algorithm appropriate for implementation is rapidly changing
 - Digital computation exponentially improving
 - Complex analog circuits linearly degrading (?)
- Power dissipation has become one of the main showstoppers.

Requires 100's of GOP's of processing per device - how to do it at the lowest energy and smallest area???

Energy and Area Efficiency

The Dream – "Software Radio"

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

Reality – "Heat-sink Radio"

[Schreier, "ADCs and DACs: Marching Towards the Antenna," GIRAFE workshop, ISSCC 2003]

Today's Analog Circuits

Digital Density vs. Analog Area

Digital Energy Efficiency

Real Life Example: 802.11 a/g

RF

Baseband

Rx ~ 300mW Tx ~ 1500mW Digital (50 GOPS, 0.13µm) ~ 50mW ADC (2x9b, 80MHz) ~ 200mW

Observations

- It is not new to realize that digital signal processing is superior to analog in terms of energy efficiency
- What's new is the relative size of the gap between digital and analog capabilities, mostly due to advancements of last 10 years
- Necessary paradigm shift
 - Today: "Let's use some logic gates to correct/calibrate analog circuits"
 - Future: "How many analog transistors do we really need?"
- How can we use digital logic more aggressively to "assist" analog functions, such as ADCs and PAs?

Analog Circuit Challenges

Thermal Noise

- Set by supply voltage and capacitance
- Fundamental

Distortion

- Exacerbated by low supplies & intrinsic device gain
- Traditional solution: high-gain feedback
- Not fundamental

Back to the Future

"Open loop"

+ Lower Noise

+ Increased Signal Range

+ Lower Power

+ Faster

+ "Simple"

– Nonlinear

Use DSP to linearize!

Digital Nonlinearity Compensation

- Use system ID to determine optimum post correction
- Possible to track variations over time without interrupting normal circuit operation

Example: Pipelined ADC

Block Diagram

- Open-loop amplifier in the first, most critical stage
- Statistics based system ID allows continuous parameter tracking
- Judicious analog/digital co-design
 - Only two corretion parameters (linear and cubic error)

Measurement Results

Stage 1 Power Breakdown

Bottom Line

Summary - Digitially Assisted ADCs

- Simplified analog circuits are key to improving power efficiency in A/D
 - Power savings of better than one order of magnitude seem possible
- Other benefits of simplistic analog designs
 - Introduces redundancy, e.g. for yield enhancement
 - Creates adjustable, massively parallel arrays in small area
- Inherently self-calibrating, potentially self-repairing
 - Simplifies testing
 - Ideal for remote, maintenance free operation, e.g. in remote sensing networks

Digitally Assisted PA Design

- Transmitter power efficiency is limited by
 - High peak-to-average power ratio (PAR)
 - Power amplifier (PA) non-linearity
- Linear PA design is increasingly difficult
- Digital circuit capabilities grow exponentially
 1 GOPS/mW, 1 GOPS/mm² in 0.13 μm CMOS
- How to achieve maximum power efficiency?

PA Design Example: 802.11a/g

- Of 64 the carriers:
 - 12 free carriers (in black) on sides and center
 - 48 data carriers (in green) per symbol
 - 4 pilots carriers (in red) per symbol for synchronization

High PAR in Time-domain Signal

Peak-to-average Power Ratio

PAR of an OFDM symbol is

$$PAR = \frac{Peak time - domain power}{Average data - carrier power}$$

- High PAR reduces power efficiency: 7.4 dB PAR ~ 10%
- May use free carriers but include only data-carrier power in the average
- Can express "minimize PAR" objective in convex form

Convex Optimization

Standard Convex Optimization Problem

minimize	$f_0(x)$	
subject to	$f_i(x) \le 0$	i = 1, K, m
	Ax = b	
in variables	$x \in \mathbf{R}^n$	

• Each f(x) is a convex function $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta) f(y)$, for all $\theta \in [0,1]$

The globally optimal solution can be efficiently calculated

The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

--R. Rockafellar, SIAM Review, June 1993

Transmitter Constraints

PAR reduction should not change receiver structure

Transmitter Constraints

PAR reduction should not change receiver structure

Transmitter Constraints

- Ideal OFDM constellation c, transmitted constellation ĉ
- Data carrier Error Vector Magnitude constraint
 Limit individual EVM

$$\|\hat{c}_i - c_i\| \leq \varepsilon, \quad i = i_1, i_2, \dots, i_D$$

Limit average EVM

$$\sqrt{\frac{1}{D}\sum_{i=i_{i}}^{i_{D}}\left\|\hat{c}_{i}-c_{i}\right\|^{2}} \leq \varepsilon$$

Free carrier Spectral Mask constraint

 $\left\|\hat{c}_i\right\| \leq \delta_i$

Constraints are convex inequalities

PAR Minimization

- PAR objective is convex
- Constellation constraints are convex

PAR minimization is a convex problem

- Use convex optimization theory to find the signal with MINIMUM PAR that satisfies transmitter EVM
- Controlled error vs. random error introduced in the constellation points in frequency domain

Optimization Example

- 802.11a/g WLAN standard
 - 52 data carriers
 - 12 free carriers
- Consider a random OFDM symbol
 - 16-QAM
 - Maximum average EVM = -19 dB

Example: Frequency-domain

Example: Frequency-domain

Example: Frequency-domain

Example: Time-domain

Simulation Results: 802.11a/g

Simulate 1000 random symbols for each data rate

Carrier	Maximum	Original PAR		Aaximum Original PAR Optin		Optimiz	ized PAR	
Modulation	EVM (dB)	μ (dB)	$\sigma~({ m dB})$	μ (dB)	$\sigma~({ m dB})$			
BPSK	-5	6.8	1.1	0.7	0.2			
BPSK	-8	6.8	1.1	1.4	0.4			
QPSK	-10	7.3	0.9	1.9	0.3			
QPSK	-13	7.3	0.9	2.6	0.3			
16-QAM	-16	7.3	0.9	3.1	0.4			
16-QAM	-19	7.3	0.9	3.5	0.4			
64-QAM	-22	7.3	0.9	3.8	0.5			
64-QAM	-25	7.3	0.9	4.1	0.5			

Convex Optimized PA

- Achieves globally minimum PAR in OFDM signals
- Delivers maximum power efficiency
- Establishes performance limits for analyzing existing PAR reduction methods
- Is feasible for real-time implementation using modern CMOS technology

Into the Future: Play on Antenna Gain

	5.	15 - 5.25GHz	5.25-5	.35GHz	5.470 -5.725GI	Hz	5.725-5.825GHz
U.S.	1	40mW (Max) 60mW (EIRP) Indoor	200mV 800mV Indoor/	V (Max) / (EIRP) Outdoor	200mW (Max) 800mW (EIRP) Indoor/Outdoor		800mW (Max) 160W (EIRP) Indoor / Outdoor
Europe		200mW (EIRP) Indoor		1W (EIRP) Indoor/Outdoor		25mW (EIRP) (5.725- 5.875GHz)	
Japan	2	200mW (EIRP) Indoor					
Spectrum		Power			Antenna Gain		
U.S.	2.4-2.4835GHz			1W		Like 5.725GHz	
Europe	Europe 2.4-2.4835GHz 100		mW (EIRP)		EIRP spec'ed		
Japan		2.471-2.497	′GHz	10	mW/MHz		???

Why is 60 GHz interesting?

Lots of Bandwidth!!!

- 7 GHz of unlicensed bandwidth in the U.S. and Japan
- Reasonable transmit power (0.5W) and high antenna gains are allowed

Path Loss of Line-of-Sight

• Typical path loss (Friis) formula is a function of antenna gain Gr and Gt:

 $\frac{P_r}{P_r} = \lambda^2 \frac{G_r G_t}{(4\pi r)^2}$

 But maximum antenna gain increases with frequency for the same antenna area, A

Antenna Gain for Constant Area

- High carrier frequencies allow higher antenna gain with the same amount of antenna area
- There is theoretically 22 dB gain at 60 GHz over 5 GHz with optimal antenna design

Future SoCs: MIMO on a Chip

Goal:

- Multiple transmit/receive chains on a single chip
- Challenges
 - Complexity, crosstalk
- Advantages
 - Range extension
 - Capacity increase
 - Cost reduction by SoC

SoC Complexity and Feasibility

- Range extension determined by 800mW x 200 ~ 160 W!
- Capacity increase determined by the amount of diversity
 - 7 channels, 3 sectors, 20 transceiver chains per sector
 - 30Mbps for 20Mhz channel at 5Ghz, 1Gbps for 1Ghz channel at 60Ghz
 - Total capacity 7*3*(20/2)*30Mbps = 6.3 Gbps!
- Computation and silicon area requirements
 - Computation: 50 GOPS per transceiver, 7*3*20*50*2 GOPS = 42 TOPS
 - Digital silicon: 42,000 GOPS/1 GOPS/mm²/4 ~ 10x10 cm²
 - Analog silicon: 7*3*20*10 mm² ~ 7x7 cm²

• At 60GHz, data rate is increased by another factor of 30.

- With highly energy efficient digital technology, we must challenge basic analog design techniques.
- Integration capability is crucial to future complex wireless system design.
- CMOS is able to exploit the unlicensed 60 GHz band with 7 GHz of bandwidth. However, it will take a new design and modeling methodology.
- Key to success: Interdisciplinary approach with device modeling, analog circuit design and DSP algorithms.

Thank you