BROADCAST ANTENNAS

Valentino Trainotti, IEEE Life Fellow, BTS-DL

Walter Gustavo Fano, IEEE Senior Member

Facultad de Ingeniería, Universidad de Buenos Aires, Argentina

Secretaría de Investigación y Doctorado

IEEE Broadcast Technology Society

BROADCAST ANTENNAS

• IEEE BROADCAST TECHNOLOGY SOCIETY SUPPORT IS GREATLY APPRECIATED MAKING THIS SEMINAR POSSIBLE

BROADCAST ANTENNAS

• OUTLINE

1. FUNDAMENTAL CONCEPTS
2. HF, VHF AND UHF ANTENNAS

Some Magnitudes

- E Electric Field Intensity [V/m]
- H Magnetic Field Intensity [A/m]
- P Radiated Power Density [W/m²]
- U Radiation Intensity [W/Rad²]
- W_T Total R<u>adiated</u> Power [W]
- D Directivity [times o dBi]
- G Gain [times o dBi]
- Z_a Antenna Impedance [Ω]
- R_R Radiation Resistance [Ω]
- T_a Antenna Noise Temperature [°K]
- Z₀ Transmission Line Characteristic Impedance $[\Omega]$

Some Magnitudes

- Z_{00} Free Space Impedance [Ω]
- **E**₀ Free Space Permittivity [F/m]
- μ₀ Free Space Permeability [H/m]
- c Free Space Velocity [m/s]]
- σ Conductivity [S/m]
- ρ Resistivity [Ω m]
- f Frequency [Hz]
- λ Wavelength [m]
- γ Propagation Constant [1/m]
- α Attenuation Constant [Nep/m]
- β Space Phase Constant [Rad/m]
- ω Time Phase Constant [Rad/S]

Antenna Parameters

- A) Radiation Pattern
- B) Directivity
- C) Gain
- D) Efficiency
- E) Effective Height
- F) Área, Aperture or Surface
- G) Impedance
- H) Temperature
- I) Power Handling
- J) Bandwith
- K) Polarization

Antenna Radiation Patterns

- Antenna Radiation Pattern is a representation of the Radiated Energy in Space.
- It can be:
 - Absolute
 - Relative:
 - » Polar
 - » Rectangular

Antenna Radiation Patterns

Polar Radiation Pattern

Antenna Rectangular Radiation Pattern

Antenna Directivity

 $\mathrm{D} = \frac{\mathrm{U}_{\mathrm{M}}}{\mathrm{U}_{0}} = \frac{\mathrm{Maximum\ radiation\ intensity}}{\mathrm{Average\ radiation\ intensity}}$

Average radiation intensity is equal to the radiation intensity of the isotropic radiator.

It is equivalent to:

 $D = \frac{4\pi U_M}{W_T} = \frac{4\pi \text{ Maximum radiation intensity}}{\text{Total radiated power}(W_T)}$

IEEE STD 149-1979

Antenna Gain

- $\mathbf{G} = \frac{4\pi \text{ Maximum radiation intensity}}{\text{Total input power}}$
- W_{in} = Total input power (W)
- $W_T = \eta W_{in}$ Total radiated power
- $\eta = \text{Efficiency}$

$$\mathbf{G} = \frac{4\pi \,\eta \, \mathbf{U}(\theta; \phi)_{\text{MAX}}}{\mathbf{W}_{\text{T}}}$$

$$G = \eta D$$

Antenna Efficiency

- a) Transmitting Case:
- Antenna Efficiency is the ratio between the antenna radiated power W_T to the antenna input power W_{in}

$$\eta = \mathbf{W}_{\mathbf{T}} / \mathbf{W}_{\mathbf{in}}$$

Antenna Efficiency

$$\eta = \frac{|\mathbf{I_g}|^2 \, \mathbf{R_r}}{|\mathbf{I_g}|^2 \left(\mathbf{R_r} + \mathbf{R_p}\right)}$$

Transmitting case $R_{rad} = R_r = Radiation Resistance [\Omega]$ $R_p = Loss Resistance [\Omega]$ It depends on the conductors and
dielectrics in the antenna circuit.Mismatching or Transmission Line
Losses are not included.

Antenna Efficiency

• b) Receiving Case:

• Antenna Efficiency is the ratio between the received power W_R to the maximum received power W_{RM} of the same ideal antenna perfectly matched and resonant.

$$\eta = W_R / W_{RM}$$

Antenna Area or Aperture

- Several Areas can be defined:
- Effective Areas
- Reradiating or Scattering Area
- Loss Area
- Collective Area
- Physical Area

Antenna Area or Aperture

• a) Antenna Effective Area:

• Is the ratio between the received or available load power W_R to the incident wave power density P_i on the receiving antenna

• $A_{eR} = W_R / P_i$

Antenna Area

- b) Antenna Reradiated or Scattering Area:
 - Is the ratio between the reradiated power W_S to the incident wave power density P_i on the receiving antenna

•
$$A_s = W_s / P_i$$

Antenna Area

c) Antenna Loss Area:
 Is the ratio between the loss power W_P to the incident wave power density P_i on the receiving antenna

• $A_P = W_P / P_i$

Antenna Area or Aperture

Antenna Area or Aperture

• All areas have been obtained in a theoretical case or with no losses.

 In real cases, these areas will be of a lower value according to the antenna losses

Effective length or height

 Z_{00} space intrinsic impedace: 377 Ω

$$\begin{split} h_{\rm e} &= 2 \sqrt{\frac{R_{\rm rad}A_{\rm eR}}{Z_{00}}} \\ A_{\rm eR} &= \frac{h_{\rm e}^2 Z_{00}}{4 R_{\rm rad}} \end{split}$$

 h_e and A_{eR} are related through R_{rad} and Z_{00}

Friis Equation

- ANTENNA POWER DENSITY IN SPACE
- $P_i = W_T D_T / 4\pi r^2$
- ANTENNA RECEIVED POWER
- $W_R = P_i A_{eR}$
- $W_R = W_T D_T A_{eR} / 4\pi r^2$

Friis Equation

- TRANSMITTING ANTENNA EFFECTIVE AREA
- $A_{eT} = \lambda^2 D_T / 4 \pi$
- Area Friis Equation (Power Relationship)

 $W_T / W_R = (\lambda r)^2 / A_{eT} A_{eR}$

Friis Equation

Directivity Friis Equation (Power Relationship)

 $W_T / W_R = (4\pi / \lambda)^2 (1/D_T D_R)$ Free Space Nondissipative Loss $A_{FS} = (4\pi r / \lambda)^2$

Harald Friis (1883-1976)

Site Attenuation

- IS THE POWER RELATIONSHIP BETWEEN THE TRANSMITTED POWER W_T AND THE AVAILABLE RECEIVED POWER W_R
- $A = W_T / W_R$ • $A = A_{FS} / D_T D_R$
- A $(\overline{dB}) = A_{FS}(\overline{dB}) [D_T(\overline{dBi}) + D_R(\overline{dBi})]$ • A $_{FS}(\overline{dB}) - A(\overline{dB}) = [D_T(\overline{dBi}) + D_R(\overline{dBi})]$

Antenna Impedance

- Is the Impedance on the Antenna
- Feeding Points.
- Is a Function of the Antenna Geometry, Close Objects or Other Antennas and of course on the Operation Frequency

Wave Polarization depends on the Antenna Electric Field Vector Orientation

Transverse Plane

Generally Polarization is ellíptic. Linear Polarization and Circular Polarization are Particular Cases.

Transverse Plane

Transmitting Antenna Polarization in a given Direction is the Transmitting Wave Polarization (IEEE STD 145-1983).

Many Antennas are Identical and have the same Polarization Properties in Transmission and Reception.

For Receiving Antennas the Polarization definition is the Polarization of an Incident Plane Wave from a given direction producing maximum available power on the Antenna Terminals (IEEE 145-1983).

Polarization Ratio

Antenna Polarización

Polarization	Polarization Ratio	Axial Ratio
Linear Vertical	$\label{eq:rho_L} \begin{split} \rho_{\rm L} &= \infty \\ \rho_{\rm D} &= 1 \\ \rho_{\rm C} &= 1 \end{split}$	$R = \infty$ $R = \infty dB$
Linear Horizontal	$\label{eq:rho_L} \begin{split} \rho_L &= 0 \\ \rho_D &= 1 \\ \rho_C &= 1 \end{split}$	$R = \infty$ $R = \infty dB$
Right Circular	$\label{eq:rho_L} \begin{split} \rho_L &= 1 \\ \rho_D &= 1 \\ \rho_C &= \infty \end{split}$	R = 1 $R = 0 dB$
Left Circular	$\label{eq:rho_L} \begin{split} \rho_{\rm L} &= 1 \\ \rho_{\rm D} &= 1 \\ \rho_{\rm C} &= 0 \end{split}$	R = -1 $R = 0 dB$

Polarization		Loss
Antenna	Wave	dB
Horizontal	Horizontal	0
Horizontal	Vertical	≻20
Horizontal	Circular	3
Vertical	Vertical	0
Vertical	Horizontal	≻20
Vertical	Circular	3
Circular	Horizontal	3
Circular	Vertical	3
Left Circular	Left Circular	0
Left Circular	Right Circular	≻25
Right Circular	Right Circular	0
Right Circular	Left Circular	≻25
Slant 45	Horizontal	3
Slant 45	Vertical	3
Slant 45	Circular	3

Antenna Bandwidth

- Maximum Permissible VSWR:
- Standard Communications......1.5
- Wide Band Communications......2.0
- Wide Band Military Communications.....3.0
- LF and MF Transmitting Broadcastings...1.2
- FM and TV Transmitting Broadcastings...1.1

Antenna Bandwidth

• TRANSMISSION LINE TYPES:

a) Open Wire600 < Z0 < 150 Ω
b) Quasi-Coaxial.....50 < Z0 < 300 Ω
c) Coaxial.....50 < Z0 < 100 Ω

Antenna Link

Radio Link between two Short Dipoles (Free Space)

Antenna Link

Radio Link between two Short Dipoles

in Free Space

FUNDAMENTAL PARAMETERS

ELECTRIC FIELD STRENGTH E [V/m] o [dBµV/m]

MAGNETIC FIELD STRENGTHΗ[A/m]ο[dBµA/m]

POWER DENSITY P [w/m²] o [dBpw/m²] [1 w/m²]= 0.1 [mw/cm²] Example: 100 w/m² = 10 mw/cm²

FUNDAMENTAL PARAMETERS

ELECTRIC FLUX DENSITY $[C/m^2]$ D **MAGNETIC FLUX DENSITY** $[Web/m^2] = [T]$ B **CORRENT DENSITY** [A/m²] **ELECTRIC VOLUMETRIC CHARGE** DENSITY $[C/m^3]$ ρ

FUNDAMENTAL PARAMETERS WAVE IN FREE SPACE (DRY AIR) **PROPAGATION VELOCITY** $c = 3*10^8$ [m/s] $Z_{00} = E/H = 377$ **INTRINSEC IMPEDANCE** $[\Omega]$ $\varepsilon_0 = 8.854 \times 10^{-12} [F/m]$ **ELECTRIC PERMITTIVITY** $\mu_0 = 4\pi^* 10^{-7} [H/m]$ **MAGNETIC PERMEABILITY** ELECTRIC CONDUCTIVITY $\sigma = 0 [S/m]$

ELEMENTARY RADIATORS ISOTROPIC SOURCE

IDEAL REFERENCE ANTENNA WITH UNIFORM RADIATION IN EVERY SPACE DIRECTION, (FREE SPACE) GAIN = DIRECTIVITY EFFICIENCY = 1

ELEMENTARY RADIATORS HEMISPHERIC SOURCE

IDEAL REFERENCE ANTENNA WITH UNIFORM RADIATION IN EVERY SPACE DIRECTION, (OVER PERFECT GROUND PLANE) GAIN = DIRECTIVITY EFFICIENCY = 1

D=3 dBi

ELEMENTARY RADIATORS THEORETICAL HALF WAVE DIPOLE **IDEAL REFERENCE ANTENNA IN FREE SPACE** $H/a = \infty$ GAIN = DIRECTIVITY**EFFICIENCY** = 1

ELEMENTARY RADIATORS THEORETICAL ELEMENTARY VERTICAL MONOPOLE (ITU) IDEAL REFERENCE ANTENNA (OVER PERFECT GROUND PLANE) **GAIN = DIRECTIVITY EFFICIENCY** = 1

$$D=3$$

D= 4.77 dBi

RADIOELECTRIC SPECTRUM

		Frequency
Band name	Abbr	and
		wavelength in air
Extremely low	ELF	3–30 Hz
frequency		100,000 km – 10,000 km
Super low	SLF	30-300 Hz
frequency		10,000 km – 1000 km
Ultra low frequency	ULF	300-3000 Hz
		1000 km – 100 km
Very low frequency	∨LF	3–30 kHz
		100 km – 10 km
Low frequency	LF	30–300 kHz
		10 km – 1 km
Medium frequency	MF	300–3000 kHz
		1 km – 100 m
High frequency	HF	3–30 MHz
		100 m – 10 m
∨ery high	VHF	30–300 MHz
frequency		10 m – 1 m
Ultra high	UHF	300-3000 MHz
frequency		1 m – 100 mm
Super high	SHF	3–30 GHz
frequency		100 mm – 10 mm
Extremely high	EHF	30-300 GHz
frequency		10 mm – 1 mm

BROADCAST RADIOELECTRIC SPECTRUM

- LF (AM)......150-290 kHz
- MF (AM)......535-1705 kHz
- HF (AM).....2.30-26.1 MHz
- VHF (LOW TV)......54-72 MHz
- VHF (LOW TV)......76-88 MHz
- VHF (HIGH TV).....174-216 MHz

BROADCASTING WORLD REGIONS

REGION 1...EUROPE AFRICA REGION 2....AMERICAS REGION 3...ASIA OCEANIA

ELECTRIC FIELD EQUATION

WAVE PROPAGATION SPACE WAVE = DIRECT + REFLECTED

DIRECT WAVE

REFLECTED WAVE

SPACE WAVE

SURFACE WAVE

$$\mathbf{E}_{\rm su} = \frac{\mathbf{E}_0 e^{-j\beta \mathbf{r}}}{\mathbf{r}} \left[\left(1 - \Gamma \mathbf{A} e^{-\Delta} \right) \right]$$

 $2E_0$

E

su

$h_{\rm T} = h_{\rm r} = 0$ (NULL) SPACE WAVE (NULL)

SUPERFACE WAVE FOR PLANE EARTH

SURFACE WAVE FOR SPHERICAL EARTH

$$\left| \mathbf{E} \right| = \frac{2\mathbf{E}_0}{\mathbf{r}} \mathbf{A} \mathbf{A}_1$$

$$A_1 = e^{-A_2 \frac{r}{r_H}}$$
 $r_H = \frac{80}{f^{1/3}(MHz)}$

 r_{H} : RADIO HORIZON DISTANCE A_{1} = DIFFRACTION O SHADOW FACTOR A_{2} ≈0.1 TO 0.2 F i u b a

IONOSPHERIC WAVE

$$E = E_0 \sum_{i=1}^{n} \frac{A_i e^{-j\beta j_i} e^{-\Delta_i}}{r_i}$$

IONOSPHERIC WAVE

NOCTURNAL EFFECT SELECTIVE FADING

FROM THE EQUATION THREE WAVES ARE SEEN:

SURFACE WAVE SPACE WAVE IONOSPHERIC OR SKY WAVE

WAVE PROPAGATION SURFACE WAVE

NO ATTENUATED FIELD AT THE UNIT DISTANCE

A = 1

$$\left|\mathbf{E}_{su}\right| = \frac{2\mathbf{E}_{0}}{r}\mathbf{A}$$

$$|\mathbf{E}_{su}| = \frac{\sqrt{30 \cdot Wt \cdot D}}{r}$$

r = 1km ISOTROPIC SOURCE D = 1 $W_{T} = 1 kW$ Fiuba

(104.77 dBµV/m)

BROADCAST ANTENNAS

HF ANTENNAS
FM ANTENNAS
TV ANTENNAS

- (2300-2498 kHz) • 120 m
- 90 m
- 75 m
- 60 m
- 49 m
- 39 m
- 31 m

(3200-3400 kHz) (3900-4000 kHz) (4750-4995 kHz) (5950-6200 kHz) (7100-7300 kHz) (9500-9900 kHz)

- 25 m
- 22 m
- 19 m
- 16 m
- 13 m
- 11 m

(11650-11975 kHz) (13600-13800 kHz) (15510-15600 kHz) (17550-17900 kHz) (21450-21850 kHz) (25670-26100 kHz)

the the

Near Solar Max - March 2001 Near Solar Min - January 2005

1.2 2 100

2005/01/07 09:50

SUNSPOTS

Cycle 24 Sunspot Number Prediction (February 2013)

niversidad de Buenos Aires

Virtual height

Ionospheric absorption index A_{i0} (vertical incidence)

 $f_{H} = Gyrofrequency$ $f_{0E} = E \text{ critical freq.}$ $f_{0F} = F \text{ critical freq.}$ $A_{i0} = 20 \log(E_0/E_1)$ $E_0 = Theoretical field$ $E_1 = Measured field$

- CRITICAL FREQUENCY:
- Maximum Frequency to be reflected by a lonospheric Layer for Vertical Incidence.
- CRITICAL ANGLE:
- Maximum Elevation Angle permitting Ionospheric Reflexion.
- TAKE OFF ANGLE:

Depends on the layer height and the distance on the earth surface.

MAXIMUM USEFUL FREQUENCY:

Depends on the critical frequency and on the take off angle (Cosecant Law).

It does not depends on the radiated

power.

MINIMUM USEFUL FREQUENCY:
 It depends on the ionospheric absortion.
 It depends on the radiated power.

Distance r as a function of take off angle for E and F layer

• EXAMPLE:

- Link distance r = 1000 km
- Take off angle $\alpha = 30^{\circ}$
- Critical Frequency f₀ 4 MHz
- MUF = f_0^* cosec $\alpha = 8$ MHz
- OWF = 0.85 MUF = 6.8 MHz

• EXAMPLE:

- Link distance r = 2000 km
- Take off angle $\alpha = 20^{\circ}$
- Critical Frequency f₀ 4 MHz
- MUF = f_0^* cosec $\alpha = 12$ MHz
- OWF = 0.85 MUF = 10 MHz

- $f_0 = 4 \text{ MHz}$
- $f = f_0$
- No Silence Zone

- $f_0 = 5 MHz$
- $f > f_0$
- Silence Zone
IONOSPHERIC PROPAGATION

• $f_0 = 6 \text{ MHz}$

f > f₀
Silence Zone

IONOSPHERIC PROPAGATION

FORECAST

MUF = Maximum Useful Frequency

OWF = Optimum Working Frequency

LUF = Lowest Useful Frequency

HF High Power Dipole

HF BROADCAST ANTENNAS λ/2 Dipole over real ground

Radiation Patterns

Dipole $\lambda/2$ over ground

Yagi-Uda Antenna

3 element Yagi-Uda d - 90* 60° Oriven element = 20* Reflector Director = 15" $\alpha = 10^{\circ}$ ø d=0* Yagi-Uda Antenna 0.58) Relative field intensity 0.451 an vie a = 90* Reflector $a = 20^{\circ}$ Director 10 10 r= 15* $\alpha = 10^{\circ}$ Ground plane 0* Side view 6 8 Relative field intensity for d - 0" itad de Ingen Universidad de Buenos Aires

L = Length

 $\mathbf{D} = \mathbf{Width}$

H = Height

VSWR and Gain of HF Rhombic Antenna

> L = 100 mD = 60 mH = 18 m

Typical Radiation Pattern at 49 m Band

 $\alpha = 40^{\circ}$ $G_{T} = 12.4 \text{ dBi}$ $L = 2\lambda$ $D = 1.2\lambda$ $H = 0.36\lambda$

Typical Radiation Pattern at 31 m Band

 $\alpha = 25^{\circ}$ $G_{T} = 16.2 \text{ dBi}$ $L = 3.3\lambda$ $D = 2\lambda$ $H = 0.6\lambda$

Typical Radiation Pattern at 25 m Band

 $\alpha = 20^{\circ}$ $G_{T} = 16.9 \text{ dBi}$ $L = 4\lambda$ $D = 2.4\lambda$ $H = 0.72\lambda$

Typical Radiation Pattern at 17 m Band

> $\alpha = 14^{\circ}$ $G_{T} = 18.6 \text{ dBi}$ $L = 5.33\lambda$ $D = 3.2\lambda$ $H = 0.96\lambda$

Take off angle as a function of frequency

HF High Power Log-Periodic Antenna

f = 9.5 MHz $\tau = 0.92$ Take off angle $a = 25^{\circ}$ $a_{\rm m} = 10^{\circ}$ $a_{\rm M} = 38^{\circ}$ D_T = 12.7 dBi

HF High Power Log-Periodic Antenna Radiation pattern 31 m Band

HF High Power Log-Periodic Antenna 2-30 MHz – Take off angle

HF Directional Antenna

HF Dipole Curtain Array

W/

HF Dipole Curtain Array

HRS 2.4.h

HF Dipole Curtain Array

HRRS 2.2.0,5 $f_0 = 10 \text{ MHz}$

HF Dipole Curtain Array 31 m

HRRS 2.2.0,5 $f_0 = 10$ MHz Reflecting screen $60 \ge 45$ m

HF Dipole Curtain Array 25 m

HRRS 2.2.0,5 $f_0 = 10$ MHz Reflecting screen $60 \ge 45$ m

HF Dipole Curtain Array 25 m HRRS 2.2.0,5 $f_0 = 10$ MHz Reflecting screen

60 x 45 m

SLEW EFFECT

Portugal Deutsche Welle **Rotatable Shortwave** Antenna (THALES)

Portugal **Deutsche** Welle **Rotatable Shortwave** Antenna (THALES)

Libya

Rotatable Shortwave Antenna (THALES)

Rotatable Shortwave Antenna

(THALES)

Libya

Rotatable Shortwave Antenna (THALES)

VSWR as a function of frequency

Horizontal radiation pattern Rotatable Shortwave Antenna - Thales

Vertical radiation pattern Rotatable Shortwave Antenna - Thales

Libya

300 Ohm Balanced SW Feed Lines 500kW

HF VERTICAL DIPOLE ARRAY

f = 26 MHz(11 m BAND)

VERTICAL DIPOLE ARRAY $H_0 = 30 m$ n = 2GAIN f = 26 MHz(11 m BAND)

VERTICAL DIPOLE ARRAY $H_0 = 30 m$ $\mathbf{n}=\mathbf{2}$ GAIN f = 26 MHz(11 m BAND)

HF VERTICAL DIPOLE **ARRAY** $H_0 = 30 m$ n = 2 $W_T = 1kW$ **NEAR FIELD** z = 1.5 mf = 26 MHz(11 m BAND)

HF VERTICAL DIPOLE **ARRAY** $H_0 = 30 m$ n = 2 $W_T = 1kW$ **NEAR FIELD** z = 10 mf = 26 MHz(11 m BAND)

HF VERTICAL DIPOLE **ARRAY** $H_0 = 30 m$ n = 2 $W_T = 1kW$ NEAR FIELD z = 30 mf = 26 MHz(11 m BAND)

REQUIREMENTS

- DIRECTIVITY AND GAIN
- RADIATION PATTERN
- POLARIZATION
- POWER HANDLING
- BANDWIDTH

- NEAR FIELD
- FAR FIELD
- RADIATED POWER
- RADIATION LEVEL
- IEEE STANDARD C95-1
- TRANSMISSION LINES

- FM and TV BROADCAST ANTENNAS
- Polarization:
- Traditionally Horizontal Polarized (HP) In the early 60's Circular (CP) and Elliptical Polarization (EP) was introduced.
- HP is Standard in US but CP and EP may be used if HP component is higher.

Propagation:

Almost no difference between day and night in the service area due to the spectrum employed (50-800 MHz).

This is valid for free Space Attenuation (A_{FS}) and other factors as Refraction, Reflection, Depolarization, Diffraction, Absorption, Scattering, Fresnel Zone Clearance, Grazing and Brewster Angle.

- Propagation:
- Free Space Propagation Loss
- $A_{FS} = (4 \pi r / \lambda)^2$
- $A_{FS}(dB) = 21.98 + 20 \log r(m) 20 \log \lambda(m)$
- A_{FS}(dB) = 32.44 + 20 log r(km) + 20 log f (MHz)
- FCC Chart of Coverage is FCC 50/50 curves
- Receiving Antenna at 9 m over ground.
- Raising the Receiving Antenna from 1.5 m to 9 m signal increase is around 10 dB.

- Propagation:
- ERP Effective Radiated Power is referred to a Theoretical Half Wave Dipole $[D_T = 1.64 (2.15 \text{ dBi})]$
- EIRP Effective Isotropically Radiated Power is referred to an Isotropic Source
- [D_T = 1 (0 dBi)]

- FM Required Signal Strength
- Rural Areas E=0.05 mV/m (34 dBµV/m)
- Suburban E=1.00 mV/m (60 dBµV/m)
- Urban E=3.16 mV/m (70 dBµV/m)
- High Pop. E=25 mV/m (88 dB μ V/m)
- Blanketing E=577 mV/m (115 dBµV/m)
- These levels must be achieved at 9 m AG

- FM Antenna Element:
- Cylindrical Dipole (HP)
- Turnstile Cylindrical Dipole (HP)
- Ring (HP)
- "V" Dipole (HP)
- Twist Ring (EP)
- Ring Stub (EP)
- Shunt Fed Slanted Dipole (CP)
- Series Fed Slanted Dipole (CP)

FM Antenna Element:

- Flat Panel Cylindrical Dipole (HP or VP)
- Flat Panel Crossed Dipole (CP)
- Flat Panel Wide Band Dipole (HP or VP)
- Cavity Backed Crossed Dipole (CP)

TURNSTILE ANTENNA (Dr. G. H. BROWN 1936)

Cylindrical Dipole Antenna Horizontal Plane Omnidirectional

Cylindrical Dipole Antenna Horizontal Plane Quasi -Omnidirectional VERTICAL POLARIZATION

"V" Dipole Element

Ring Element

Quasi –Omnidirectional Dipolar Element Linear Horizontal Polarization

Twist Ring Element

Horizontal Plane Quasi -Omnidirectional

> Elliptical Polarization

Ring Stub Element

Horizontal Plane Quasi -Omnidirectional

> Elliptical Polarization

Ring Stub Element

Horizontal Plane Quasi -Omnidirectional

> **Circular Polarization**

Shunt Fed Slanted Dipole

Two Half Wave Dipole Desplazed 90° In Space (Penetrator)

Circular Polarization

Element of Two Dipole Antennas 90° between them in Space

Circular Polarization

Element of Two Dipole Antennas 90° between them in Space

Rotatiller

Circular Polarization

VHF BROADCAST ANTENNAS Flat Panel Cylindrical Dipole Dipole Detail Dipole Reflector **Directional Linear Polarization**

Flat Panel Crossed Dipole

Directional Circular Polarization

Flat Panel Wide Band Dipole

VHF BROADCAST ANTENNAS Flat Panel Wide Band Dipole

Flat Panel Wide Band Dipole

Cavity Backed Dual Dipole

Directional Circular Polarization

FM Antenna Array Installation

VHF BROADCAST ANTENNAS FM Antenna Array Installation

Alabama 600 m Height Tower Supporting Tower Guys

VHF BROADCAST ANTENNAS FM Antenna Array Feed

End Feed up to Center Feed 8-16 Elements 7 Elements

VHF BROADCAST ANTENNAS FM Antenna Array Branch Feed System

FM Antenna Array Branch Feed System

VHF AND UHF BROADCAST ANTENNAS

VHF AND UHF BROADCAST ANTENNAS

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

VHF DIRECTIONAL ARRAY FOR FM or TV

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

n HALF WAVE VERTICAL DIPOLE ARRAY IN THE VERTICAL PLANE

ELECTRICO FIELD EQUATION

$$E = E_1 + E_2 + E_3 + E_4 + \dots$$

$$\mathbf{E} = \mathbf{n}\mathbf{E}_{0} \frac{\operatorname{sen}\left(n\frac{\beta d}{2}\cos(\theta) + \frac{\delta}{2}\right)}{\operatorname{sen}\left(\frac{\beta d}{2}\cos(\theta) + \frac{\delta}{2}\right)} \cdot \frac{\cos\left(\frac{\pi}{2}\cos(\theta)\right)}{\operatorname{sen}\theta}$$

n EQUAL CURRENT IN EACH ELEMERT δ TIME RELATIVE PHASE BETWEEN ELEMENTS

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

A

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

Erel [dB]

A

VHFAND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

Erel [dB]

A

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

Erel [dB]

 $\delta = 0^{\circ}$

θ

VHFAND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

Erel [dB]

A

VHF AND UHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

Erel [dB]

A

FM "V" DIPOLE ANTENNA HORIZONTALLY POLARIZED f = 100 MHz

FM "V" DIPOLEANTENNAHORIZONTALLYPOLARIZEDf = 100 MHz

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

ANTENNA ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 1.5 m

FM "V" DIPOLE

Fiuba Facultad de Ingeniería Universidad de Buenos Aires

FM "V" DIPOLE **ANTENNA ARRAY** HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**NEAR POWER DENSITY OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 1.5 m

Fiuba Facultad de Ingeniería Universidad de Buenos Aires

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0}.\mathbf{7} \lambda$ z = 10 m

Fiuba Facultad de Ingeniería Universidad de Buenos Aires

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 37 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 37 m

Fiuba Facultad de Ingeniería Universidad de Buenos Aires

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 100 m$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

FM "V" DIPOLE ANTENNA ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 100 m$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

Fiuba Facultad de Ingeniería Universidad de Buenos Aires

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 100 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 1.5 m

VHFAND UHF BROADCAST ANTENNAS FM "V" DIPOLE ANTENNA 10 **ARRAY** HORIZONTALLY 10 **POLARIZED** f = 100 MHzP [mW/cm2] $H_0 = 100 \text{ m}$ Wt = 1 kW**NEAR POWER** 10 **DENSITY OVER** PERFECT 10 10 10 10 10

x [m]

GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 1.5 m

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 100 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 10 m

ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 100 m$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 100 m

FM "V" DIPOLE

ANTENNA

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 300 m$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

FM "V" DIPOLE ANTENNA ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 300 \text{ m}$ Wt = 1 kW**GAIN OVER** PERFECT GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 300 \text{ m}$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 1.5 m

VHFAND UHF BROADCAST ANTENNAS FM "V" DIPOLE **ANTENNA** 10 **ARRAY** HORIZONTALLY 10 **POLARIZED** f = 100 MHz10 P [mW/cm2] $H_0 = 300 \text{ m}$ Wt = 1 kW10 **NEAR POWER DENSITY OVER** 10 PERFECT GROUND 10 10² 100 10 103 x [m]

GROUND n = 8 $d = 0.7 \lambda$ z = 1.5 m

FM "V" DIPOLE ANTENNA ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 300 \text{ m}$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 10 m

FM "V" DIPOLE **ANTENNA** ARRAY HORIZONTALLY **POLARIZED** f = 100 MHz $H_0 = 300 \text{ m}$ Wt = 1 kW**NEAR E FIELD OVER PERFECT** GROUND $\mathbf{n} = \mathbf{8}$ $\mathbf{d} = \mathbf{0.7} \lambda$ z = 300 m

FM DIPOLE ANTENNA VERTICALLY POLARIZED

FM DIPOLE ANTENNA VERTICALLY POLARIZED

GAIN FREE SPACE

FM DIPOLE ANTENNA VERTICALLY POLARIZED

GAIN FREE SPACE

f = 100 MHzFBR = 5.63 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 30 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 11.14 \text{ dBi}$ FBR = 7.56 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 30 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 11.14 \text{ dBi}$ FBR = 7.56 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY **POLARIZED** H = 30 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 100 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 18.8 \text{ dBi}$ FBR = 7.6 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 100 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 18.8 \text{ dBi}$ FBR = 7.6 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 100 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY **POLARIZED** H = 100 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 100 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 100 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 300 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 18.8 \text{ dBi}$ FBR = 7.6 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 300 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 18.8 \text{ dBi}$ FBR = 7.6 dB

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY **POLARIZED** H = 300 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA VERTICALLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

n = 8 $W_{T} = 1 kW$ z = 300 m

FM DIPOLE ANTENNA CIRCULARLY POLARIZED

FM DIPOLE ANTENNA CIRCULARLY POLARIZED

GAIN FREE SPACE

FM DIPOLE ANTENNA CIRCULARLY POLARIZED IN FREE SPACE

DIRECTIVITY AS A FUNCTION OF ELEMENT NUMBER

f = 100 MHz $d = 0.7 \lambda$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 30 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 100 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 100 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 100 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY **POLARIZED** H = 100 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 100 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m GAIN OVER PERFECT GROUND

n = 8 $D_{TM} = 16 \text{ dBi}$

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY **POLARIZED** H = 300 m**POWER** DENSITY **OVER PERFECT** GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

FM DIPOLE ANTENNA CIRCULARLY POLARIZED H = 300 m NEAR FIELD OVER PERFECT GROUND

n = 8 $W_{T} = 1 kW$ z = 300 m

FM OR TV PANEL DIPOLE ANTENNA

HORIZONTALLY POLARIZED

FM OR TV PANEL DIPOLE ANTENNA ONE ELEMENT RADIATION PATTERN

F = 200 MHz $D_{TM} = 6.78 \text{ dBi}$ HORIZONTALLYPOLARIZED

FM OR TV PANEL DIPOLE ANTENNA TWO ELEMENT RADIATION PATTERN

F = 200 MHz $D_{TM} = 4.40 \text{ dBi}$ HORIZONTALLYPOLARIZED

FM OR TV PANEL DIPOLE ANTENNA THREE ELEMENT RADIATION PATTERN

F = 200 MHz $D_{TM} = 3.95 \text{ dBi}$ HORIZONTALLYPOLARIZED

FM OR TV PANEL DIPOLE ANTENNA FOUR ELEMENT RADIATION PATTERN

F = 200 MHz $D_{TM} = 2 \text{ dBi}$ HORIZONTALLYPOLARIZED

FM OR TV PANEL DIPOLE ANTENNA ONE ELEMENT TWO BAY RADIATION PATTERN

F = 200 MHz $D_{TM} = 9.4 \text{ dBi}$ HORIZONTALLYPOLARIZED $d = 0.5 \lambda$ $Lp = 0.667 \lambda$ $S = 0.25 \lambda$

FM OR TV PANEL DIPOLE ANTENNA ONE ELEMENT FOUR BAY RADIATION PATTERN

F = 200 MHz $D_{TM} = 12.2 \text{ dBi}$ HORIZONTALLYPOLARIZED $d = 0.5 \lambda$ $Lp = 0.667 \lambda$ $S = 0.25 \lambda$

FM OR TV PANEL DIPOLE ANTENNA ONE ELEMENT EIGHT BAY RADIATION PATTERN

F = 200 MHz $D_{TM} = 15.2 \text{ dBi}$ HORIZONTALLYPOLARIZED $d = 0.5 \lambda$ $Lp = 0.667 \lambda$ $S = 0.25 \lambda$

FM OR TV ONE ELEMENT PANEL DIPOLE ANTENNA DIRECTIVITY AS A FUNCTION OF BAY NUMBER FREE SPACE

HORIZONTALLY POLARIZED F = 200 MHz $d = 0.5 \lambda$ $Lp = 0.667 \lambda$ $S = 0.25 \lambda$

VHFAND UHF BROADCAST ANTENNAS
(degree)\[\Vee{legree}]\(\Vee{legree})</t

r [km]

VHF BROADCAST ANTENNAS 8 VERTICAL DIPOLE ARRAY

 $E [dB\mu V/m]$

VHF BROADCAST ANTENNAS 8 VERTICAL DIPOLE ARRAY E [dBµV/m]

VHF AND UHF BROADCAST ANTENNAS 8 VERTICAL DIPOLE ARRAY

N=8 d=0.7 λ W_T=20kW f=102MHz h_t=150m h_r=6m

STATION SERVICE

VHF AND UHF BROADCAST ANTENNAS 8 VERTICAL DIPOLE ARRAY

N=8d=0.7\lambda W_T=20kW f=102MHz h_t=150m h_r=6m

AM/FM SERVICE AREA COMPARISON IN BUENOS AIRES

VHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

TURNSTILE ANTENNA (Dr. G. H. BROWN 1936)

HORIZONTAL PLANE OMNIDIRECTIONAL HORIZONTAL POLARIZATION

FM RADIATORS (VHF= 88-108MHz)

DIRECTIONAL ARRAY

ARRAY OF TWO VERTICAL DIPOLES

VERTICAL POLARIZATION

Fiuba Facultad de Ingeniería Universidad de Buenos Aires ARRAY OF THREE BAYS OF TWO SHUNT SLANTED DIPOLES 90° IN SPACE

DIRECTIONAL ARRAY

(PENETRATOR)

CIRCULAR POLARIZACION

DIRECTIONAL ARRAYS

TWO TWIST RING ARRAY

ELLIPTICAL POLARIZATION

VHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

ELEMENT OF TWO SERIES FED SLANTED DIPOLES OF 90° IN SPACE

CIRCULAR POLARIZATION

VHF BROADCAST ANTENNAS DIRECCIONAL ARRAYS

TWO CROSSED HALF WAVE DIPOLES WITH REFLECTOR

REFLECTOR

CIRCULAR POLARIZATION

VHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

ARRAY OF FOUR BAYS HALF WAVE CROSSED DIPOLES WITH REFLECTOR

REFLECTOR

CIRCULAR POLARIZATION

VHF BROADCAST ANTENNAS DIRECTIONAL ARRAYS

ARRAY OF HIGH POWER CROSSED HALF WAVE DIPOLES ON THE EMPIRE STATE BUILDING NEW YORK

(RF OFF)

CIRCULAR POLARIZATION

- FM IBOC Antenna Operation (Digital Trans.)
- Three methods are possible:
- a) Single Transmitter with A and D combined and feed them to a commom Antenna.
- b) Separated A and D Transmitter Signals combined in the Transmitter Building and fed to a common Antenna.
- c) Separated A and D Transmitters each feeding signals through separated Transmission Lines and Antennas

FM IBOC ANALOG/DIGITAL TRANS.

VHF BROADCAST ANTENNAS FM IBOC ANALOG/DIGITAL TRANSMISSION

Two Interleaved FM Antennas

FM Multistation Operation

Two systems are possible:

a) Branched Combiner (Tee or Star)
b) Balanced Combiner (Quadrature Hybrid)

VHF BROADCAST ANTENNAS FM Branched Combiner

VHF BROADCAST ANTENNAS FM Balanced Combiner

VHF and UHF BROADCAST ANTENNAS

- TV Antenna Element
- Panel Dipole (HP) Directional
- Panel Crossed Dipole (CP) Directional
- Batwing (Superturnstile) HP Omni
- Batterfly (HP) Directional
- Travelling Wave Slot :
 - Resonant (HP)
 - Non Resonant (HP)

TV Directional Antenna Elements

Panel Dipole

Panel Double Dipole

Panel Crossed Dipoles

Cloverleaf

VHF TV BROADCAST ANTENNAS TV DIRECCIONAL ELEMENT

Low VHF TV Antenna

Flat Panel Dipole

VHF TV BROADCAST ANTENNAS TV DIRECCIONAL ELEMENT

SUPER TURNSTILE ANTENNA ELEMENT (BATWINGS)

MASTERS 1946

POLARIZACION HORIZONTAL

TV DIRECTIONAL ARRAYS

SUPER TURNSTILE ANTENNA

HORIZONTAL POLARIZATION

LOW BAND 54-88 MHZ (# 2 A 6)

HIGH BAND 174-216 MHZ (# 7 A 13)

TV Slotted Antenna Elements

COAXIAL TRANSMISSION LINE

RIGID COAXIAL TRANSMISSION LINE

SIZE	Maximum Frequency	VP / c	ATT / W _T 50 MHz	ATT / W _T 200 MHz	ATT / W _T 500 MHz
1 5/8	2.7	0.92	0.44/27	0.90/13	1.45/8
3	1.64	0.93	0.29/58	0.60/28	1.0/17
6 1/8	0.86	0.97	0.13/24 4	0.27/12 0	0.45/75
9	0.65	0.97	0.11/87 8	0.23/42 2	0.41/25 2

Air Coaxial Line

SIZE	Maximum Frequency	VP / c	ATT / W _T 50 MHz	ATT / W _T 200 MHz	ATT / W _T 500 MHz
7/8	5.0	0.89	0.79/12	1.62/6	2.61/4
6 1⁄4	3.3	0.89	0.57/19	1.19/9	1.94/6
1 5/8	2.5	0.89	0.45/25	0.93/12	1.53/7
2 1/4	2.2	0.89	0.39/30	0.83/14	1.39/8

Foam Coaxial Line

Braodcast Semifexible Air Coaxial Lines

BROADCAST ANTENNAS

Braodcast Semifexible Air Coaxial Lines

VHF BROADCAST ANTENNAS MAXIMUM ELECTROMAGNETIC RADIATION IEEE/ANSI STANDARD C95-1

	フリリー

BAND	Emax		Hmax		Pmax	
MHz	V/m	dBµV/m	A/m	dBµA/m	mW/cm ²	dBpW/m ²
50-300	61.4	155.8	0.163	104.2	1.0	130.0

NON CONTROLLED							
BAND	Ema	X	Hmax		Pmax		
MHz	V/m	dBµV/m	A/m	dBµA/m	mW/cm ²	dBpW/m ²	
50-300	27.5	148.8	0.073	97.2	0.2	123.0	

VHF BROADCAST ANTENNAS 4 VERTICAL DIPOLE ARRAY MAXIMUM RADIATION P [dBpW/m²]

VHF BROADCAST ANTENNAS 8 VERTICAL DIPOLE ARRAY P[mW/cm²]

BROADCAST ANTENNAS

